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Abstract

The majority of formal approaches to analogy models analogies as struc-
ture preserving mappings from source to target domain. Bipin Indurkhya
developed a formal theory of analogies and cognitive processes in gen-
eral, where source and target are represented as concept networks, which
are special kinds of algebras. The relation between them is modeled as
an algebra as well. Another approach, which is also algebraic in nature,
is heuristic-driven theory projection. It represents source and target do-
mains as theories. Heuristic-driven theory projection is based on the idea
that anti-unification can be used for modeling analogies. The analogical
relation between source and target is induced by a heuristic algorithm
that computes a third theory that is a generalization of source and target
theories. In this thesis, the concepts of analogy and bisimulation, a no-
tion expressing structural identity without being isomorphic, are brought
together. The relations that model the connection between source and
target in Indurkhya’s theory and in heuristic-driven theory projection are
compared to each other and to bisimulation. Conditions are specified
under which these relations are bisimulations.
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1 Introduction

The interest in analogies is relatively high in cognitive science because analogies play
a central role in various cognitive mechanisms. In its linguistic form, analogy is the
explicit mentioning of relational likeliness of distinct situations [16]. That analogies
can already be found in the earliest preserved literature, written about four thousand
years ago, shows its importance. In the epic Gilgamesh, it says:

... Gilgamesh covered Enkidu’s face with a veil like the veil of a bride. He
hovered like an eagle over the body, or as a lioness does over her brood.

Analogy also refers to more general processes of ’seeing something as something else’
[16]. Much work has been done to investigate the underlying principles of analogical
reasoning. One of the fundamental empirical results in this field is that the interpre-
tation of analogies and metaphors is mainly guided by the relational structures within
the domains. This is the basic idea of Dedre Gentner’s structure-mapping theory [13],
an influential work, which most of the computational models of analogy are based on.

Bipin Indurkhya developed a formal theory for the modeling of metaphors, analogies
and cognitive processes in general [25]. According to this theory, the processing of
analogies is based on the same principles as perceptual processes. In this framework
the domains of analogies are modeled as concept networks, which are special kinds
of algebras. The cognitive relation between them is modeled as an algebra as well.
Indurkhya specifies a property that some cognitive relations have, called coherency ;
coherent cognitive relations are structure preserving.

Heuristic-driven theory projection (HDTP) [20] is an approach that can model analo-
gies and metaphors in domains that are more complex and require full first-order logic
for representation. In HDTP the domains of an analogy are represented as theories
in first-order languages. HDTP is based on the assumption that anti-unification can
be used in models of analogy [19].

Given source and target theories, a heuristic algorithm computes a third theory
that subsumes the input theories. This generalized theory is a structural description
of both source and target. Additionally, facts and laws are transferred from source
to target and thereby the creative aspects of analogy are modeled. The analogical
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1 Introduction

relation between source and target relates corresponding items in source and target
that have been generalized.

In both approaches, the one developed by Indurkhya and HDTP, the central relations
between source and target ensure structural similarities of both domains. Bisimula-
tion is a notion that expresses structural identity without being isomorphic. It is
used in different fields, e.g. concurrent processes, game theory, modal logic and coal-
gebra. The question that arises here is how far the coherent cognitive relation in
Indurkhya’s theory and the analogical relation in HDTP differ from each other and
whether they are bisimulations. In this thesis, this is investigated on a formal level,
and coherent cognitive relations and analogical relations are compared to each other
and to bisimulations. Precise conditions are specified for coherent cognitive relations
and analogical relations for being bisimulations.

The remainder of this thesis is structured as follows: Section 2 will give an outline
of some of the work that has been done to model human analogical reasoning. In
Section 3, the basic ideas of Indurkhya’s theory and heuristic-driven theory projection
will be presented, concentrating on the formal concepts that are used to represent the
entities involved in an analogy and the relations between them. Section 4 will give
an overview of different variations of bisimulation that are used to express structural
equivalences in various domains. In Section 5, bisimulation and the formal concepts of
Indurkhya’s cognitive models and heuristic-driven theory projection will be brought
together. The structure preserving relations in both approaches will be compared to
the notion of bisimulation. In Section 6, I will conclude this thesis and present an
outline of future work.
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2 Analogies - An Overview

2.1 Analogy

Different types of analogies can be distinguished [25]. Two of them are:

• Proportional analogy
A proportional analogy can be formalized as A : B :: C : D (’A is to B as C is to
D’). A proportional analogy problem has the same underlying structure. Items
A,B and C are given and item D has to be found. Such tasks are known from
intelligence tests, where they occur in various domains, e.g. geometrical objects,
words or numbers. An example of a proportional analogy is: � : � :: ♦ : �.

• Predictive analogy
A predictive analogy is used to explain a new domain by specifying similarities
to a known one. A well-known example is the Rutherford analogy: The hydrogen
atom is like the solar system, which can be used to explain Rutherford’s atom
model to someone who does not know it but has a conceptualization of the solar
system.

Note that the Rutherford analogy can also be understood as a proportional analogy,
formally represented as sun : planet(s):: nucleus : electron.
Analogy is not limited to the linguistic level but also refers to more general processes
of ’seeing something as something else’ and is one of the core processes of cognition.
Analogy as a cognitive mechanism in general can be seen as ’the ability to think about
relational patterns’ [16].
Another related field is analogical problem solving, where the solution of a known
problem is transferred to an unsolved problem in order to derive its solution. This is
a very natural way for humans to solve problems.

Much work has been done in cognitive science to study the underlying processes of
analogical reasoning. Analogy can be formalized as the establishment of a relation
between two entities that are brought together in the analogy. One entity (referred
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2 Analogies - An Overview

to as ’target’) is described by comparing it to another one (’source’ or ’base’). The
source is usually thought of to be better known than the target.

2.2 Analogy as Structure-Mapping

Psychology has investigated the processes of human analogical thinking. One of the
major findings was that relational patterns, i.e. interrelationships between facts, play
a central role in human analogical reasoning. This is one of the basic ideas of Dedre
Gentner’s structure-mapping theory [13], an influential work in the field of model-
ing analogical reasoning, which is based on the results of psychological experiments.
According to this theory, the interpretation of analogies is guided by the relational
structures within the domains rather than the attributes of single objects. In the
example ’The hydrogen atom is like the solar system’, the psychologically preferred
interpretation tells us that the electron can be thought of as revolving around the
nucleus because the interrelationship of the forces between nucleus and electron is
similar to that between sun and planets in the solar system. An interpretation of
the analogy that results in inferring that the nucleus is hot and yellow is clearly not
preferred. What is important for the interpretation is the relation between sun and
planets, and the one between nucleus and electron. When interpreting the analogy
in the standard way, attributes like hot(sun) and yellow(sun) are not relevant.

According to the structure-mapping theory, an analogy can be formalized as a struc-
ture preserving mapping from source to target domain. Relations between objects of
the source are transferred to the target domain and hold between the corresponding
objects in the target. Analogous objects do not have to resemble each other but can
have different attributes. What makes them analogous is that they play equivalent
roles in relational structures. Gentner also formulated the systematicity principle
[13], which says that mappings of larger structures containing higher-order relations,
i.e. relations that take other relations as arguments, are preferred. This principle
formalizes what has been found out in empirical studies: Humans have a tendency
towards interpretations of analogical mappings that preserve the in-depth structure
of the source domain [13].
The majority of computational models of analogy follow the ideas formulated in Gen-
tner’s structure-mapping theory. They use symbolic descriptions of source and target
that allow for explicit representation of relations; most approaches use variations of
predicate calculus to represent the two analogous domains.
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2 Analogies - An Overview

2.2.1 The Structure-Mapping Engine

An implementation based on the structure-mapping theory is the structure-mapping
engine (SME) [7, 8], a program simulating human analogical reasoning. As input
SME is provided with the propositional descriptions of source and target domain in
predicate/argument structure. The central part of SME’s procedure is the estab-
lishment of syntactically consistent analogical mappings from source to target. The
mappings are defined not only on the objects of the domains, but also predicates
(except one-place predicates) associated with an object are mapped. This reflects
what is explained above: The interpretation of analogies by humans is guided by the
relational structures of the domains rather than the attributes of the objects. Which
of the relations in the source are actually mapped is determined by the systematic-
ity principle. Relations that are parts of structures containing higher-order relations
are preferred over relations that occur in isolation. SME has been tested on several
examples; one of them is the Rutherford analogy. In this example, SME is provided
with the following input:
The description of the source domain:

yellow(sun),
greater(temperature(sun), temperature(planet)),
cause(attracts(sun, planet) and greater(mass(sun), mass(planet)),

revolves-around(planet, sun)).
The description of the target:

attracts(nucleus, electron),
greater(mass(nucleus), mass(electron)),
revolves-around(electron, nucleus).

Given these descriptions, the preferred mapping that is computed by SME maps sun
to nucleus and planet to electron because this results in the highest structural agree-
ment of source and target. Since the relations holding in the source are transferred to
the target, one derives the causal explanation for why the electron revolves around the
nucleus: cause(attracts(nucleus, electron) and greater(mass(nucleus), mass(electron)),
revolves-around(electron, nucleus)).

As argued in [9], one constraint on cognitive simulations is the integration constraint :
For models of analogies it means that a computational model of analogy should also
be usable as a subpart of larger models of more general cognitive processes that
involve processes of analogy. This condition is reasonable because cognition consists
of various integrated subprocesses. Therefore, for an appropriate model of cognition
one must strive for integrability of the different submodels.
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2 Analogies - An Overview

2.2.2 MAC/FAC

The integrability of SME has been tested by integrating it into a system called
MAC/FAC [15] that models similarity-based retrieval. Similarity-based retrieval oc-
curs in situations where something in our environment reminds us of something we
have encountered in the past. The similarity of both items can be on different levels:
It can be structural, e.g. hearing octaves can remind one of the periodic tables in
chemistry, or purely superficial, e.g. seeing someone who is wearing round glasses can
remind one of the wheels of a bicycle [15].
The MAC/FAC program gets two inputs: a pool of items stored in the memory, rep-
resenting the content of the long-term memory, and a probe, representing the new
item. What MAC/FAC does is choosing one entity from its memory that best fits
the probe, i.e. it selects the item of which one would most likely be reminded upon
encountering the probe item. MAC/FAC models similarity-based retrieval as a two-
stage process. First, possible candidates are chosen from the memory and in a second
stage these candidates are evaluated and the most promising one is selected. In the
first stage (MAC, ”many are candidates”), a matcher is used that selects the can-
didates from the memory that will most likely give best results in the second stage
where the best of the candidates is selected.
In the second stage (FAC, ”few are chosen”), the candidates chosen in the first stage
are evaluated. In this process, SME is used; correspondences between the candidates
and the probe are computed and candidate inferences are added. Information from
the memory item is transferred to the probe. The correspondences are evaluated ac-
cording to the level of similarity between candidate and probe. Finally, the candidate
with the best results is chosen.

2.2.3 Phineas

SME has also been used as a subpart of Phineas [6], a system that models the learning
of theories in the domain of physics. Phineas ’learns’ physical theories by analogy with
previously understood examples. It has a database where known physical theories are
stored, e.g. theories explaining boiling, osmosis, liquid flow and oscillation [6, 9]. As
input Phineas gets the qualitative description of the behavior of a physical system.
In one of the examples, Phineas has been tested on, it is provided with a description
of the temperature changes that occur when a hot brick is immersed in cold water.
Given this description, Phineas first tries to ’understand’ the behavior by applying one
of the physical theories of its database to it. In this stage, the qualitative simulator
QPE is used, which produces predictions about the possible behaviors of a system in
a certain situation that are consistent with the qualitative laws of a given theory.
Using QPE, Phineas simulates the possible behaviors of the system on the base of the
theories in its database. In the next step, Phineas uses a measurement interpretation
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system to construct explanations of the behavior of the system under consideration.
This measurement interpretation system explains the data the of a system’s behavior
by comparing the data to the simulations based on the known theories. If in the
example mentioned above, Phineas does not have a theory of heat flow in its database,
it tries to explain the temperature changes of water and brick with an analogous
theory; it searches in its database of previously explained examples. This is the point
where SME comes into play since the previously understood example with the highest
structural similarity to the water-brick-situation has to be found because that is the
one that will probably explain the current situation in the best way. In the example,
Phineas chooses ’water flow’ from its memory and applies this theory to the example
of the brick in the water. Thus, the concept of ’water flow’ is used to explain the
’heat flow’ in the situation with the hot brick in the cold water.

It has been criticized that the models presented above, wich are based on SME, do
not take into account the limited capacity of human working memory [24]. A huge
amount of data is processed in parallel in these programs. In this respect, they do not
model the underlying processes of human analogical thinking in an appropriate way.
Holyoak and Hummel introduce an alternative architecture for analogical reasoning.
Their system LISA [23] seems to be closer to psychological and neuroscientific findings.
Their idea is that not only the symbolic nature of cognitive processes has to be
modeled but the model should also be embedded in a neurally inspired environment
because that is where the processes take place in humans.

2.3 Analogy as High-Level Perception – Copycat

Another point of criticism of SME and other similar models is that the representations
of source and target are explicitly given and kept fixed. It is clear that the analogical
mapping depends crucially on how source and target are represented. This argu-
ment can be seen as a starting point for the approach by Falkenhainer and Mitchell
who developed a system called Copycat [22]. Copycat operates in a microworld of
alphabetical strings. The following example illustrates the analogical problems in
Copycat’s microworld [22]:

If abc is changed to abd, how would you change yk in the same way?

’In the same way’ has to be defined more precisely but empirical studies revealed
that the most frequent answer is yl, which seems to be the natural way to solve the
problem. The underlying rule that is used here is: Replace the rightmost character
by its alphabetic successor. Now, consider a slightly modified version of the problem:

If aabc is changed to aabd, how would you change ykk in the same way?

7
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Here, the answer does not seem as obvious as the one in the previous problem. One
possibility to solve this problem is clearly to proceed in the same way as in the first
one, i.e. the rightmost character is again replaced by its successor which yields the
result ykl. But for most people there is another way to solve it that seems more
appropriate. In contrast to the first problem, the a and the k are doubled, which
changes the appearance of the strings: The two as and ks are perceived as groups.
Hence, changing ykk to yll seems more natural than transforming it into ykl. This
phenomenon is referred to as mental fluidity. It means that one concept can slip
into another one because the ’distances’ between concepts change with the evolving
perception. In the example above, the concept rightmost character slips into the
concept rightmost group. The microworld is not designed to model only analogical
reasoning in the domain of alphabetic strings but it is supposed to stand for other
domains closer to reality. A concept like successor of can stand for other relational
concepts like brother of or neighbor of. The phenomenon of mental fluidity is reflected
in the slipnet, a central part of Copycat’s architecture, which contains concept types
whose distances change because they are influenced by the process of perception.

Although the the approaches presented in this section differ in many aspects, they all
focus on the relations that hold between the entities in the analogous domains.
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3 Algebraic Approaches to Analogy

In this section, two approaches to analogy will be presented that differ from other
approaches in that they have formal specifications and do not work primarily example-
based as the ones presented in the previous section. According to the structure-
mapping theory, analogy can be formalized as a structure preserving mapping from
source to target. This idea is also respected in the following approaches, which are
both based on algebraic frameworks.

3.1 Indurkhya’s Theory

3.1.1 Formal Concepts

The theory developed by Bipin Indurkhya [25] is not only an approach to the modeling
of metaphors and analogies but proposes a model for cognitive processes in general. I
will focus on the formal concepts of this approach and how analogies can be modeled in
this framework, and not on the philosophical basis of Indurkhya’s view of cognition in
general. He proposes a formal algebraic framework for modeling cognitive processes.
In some respects, the underlying ideas of this approach are similar to the ones of
Falkenhainer’s Copycat because both emphasize the connection of perception and
higher cognitive processes. According to them, higher cognitive processes have the
same underlying principles as perceptual processes.

In Indurkhya’s framework, perceptual processes are modeled as an interrelation of
a source concept network, which stands for the conceptualization the agent has of
reality, and the sensorimotor data the agent has of it (referred to as ’environment’)
[25]. The concept network and the system of sensorimotor information are represented
as algebras.

Definition 1 (Indurkhya). An algebra is a pair 〈A,Ω〉, where A is a non-empty set
of objects and Ω is a set of operators. Associated with each operator is its arity, i.e.
the number of arguments it takes. An operator of arity n is a function ω : An → A.
Ω(n) denotes the set of operators of arity n.

9



3 Algebraic Approaches to Analogy

The relation between both algebras, the connection between source concept network
and environment, is also modeled as an algebra. This results in three algebras, which
together form a so called cognitive model. Let us consider these three components in
more detail:

Definition 2.

• The source concept network A = 〈A,Ω〉 is an algebra satisfying the fol-
lowing conditions:

1. The class of operators Ω is either finite or a subset of the polynomial op-
erations generated by a finite subset of Ω.

2. Every operator is a computable function.

3. The algebra is finitely generated, i.e. there is a finite set X ⊆ A such
that every element of A can be generated from elements of X by using the
operators of Ω.

• The environment is represented as an algebra B = 〈B,Σ〉.

• The relation between source concept network and environment, referred to as
cognitive relation, is an algebra R = 〈R,Ψ〉 with R ⊆ A × B and Ψ(n) ⊆
Ω(n) × Σ(n) for all arities n and

1. Ψ−1(σ) 6= ∅ for all σ ∈ Σ.

2. 〈R,Ψ〉−1(〈B,Σ〉) ⊆ 〈A,Ω〉 is a finitely generated concept network.

• C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 is called cognitive model.

Note that the constraints for the source algebra are stronger than the ones for the
environment algebra. This is due to the fact that the sensorimotor data one has of
reality can itself be seen as more or less unstructured, and structural information
is obtained when it is interpreted in terms of the conceptualizations one has of the
environment. It is the source concept network that induces the structure of the en-
vironment via the cognitive relation. This can be seen in the first condition for the
cognitive relation, which says that each operator of the environment is related to an
operator of the source concept network. If there were transitions in the environment
which did not correspond to any operators in the source concept network, the cog-
nitive agent would not have a conceptualization of these transitions. Condition 1
ensures a certain degree of structural overlap of concept network and environment
on the operator level. The second condition says that the subset of the source con-
cept network that is related to the environment is itself a finitely generated concept
network. Thus, finite representability of the cognitive model can be ensured.
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An important property of some cognitive relations is that they preserve the operations
in the source concept network and the transformations in the environment. This
property is called coherency. It is quite clear that coherency is an ideal a cognitive
agent must strive for in order to make sense out of its sensorimotor data of the
environment. This idea of a structure preserving cognitive relation is similar to the
properties of the analogical mapping in Gentner’s structure-mapping theory, which is
structure preserving as well.
That leads us to the notion of coherency, which is investigated in more detail in
Section 5.

Definition 3 (Indurkhya). Given a cognitive model C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 and
a class X ⊆ A, we say that C (or 〈R,Ψ〉) is locally coherent in X if and only if
whenever x1, . . . , xn ∈ X, ω ∈ Ω(n) and ω(x1, . . . , xn) ∈ X, then for any y1, . . . yn ∈ B
and σ ∈ Σ(n) with 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R and 〈ω, σ〉 ∈ Ψ(n), it is the case that
〈ω(x1, . . . , xn), σ(y1, . . . yn)〉 ∈ R.
Conversely, C (or 〈R,Ψ〉) is called locally coherent in Y ⊆ B if and only if when-
ever y1, . . . , yn ∈ Y, σ ∈ Σ(n) and σ(y1, . . . , yn) ∈ Y , then for any x1, . . . xn ∈ A
and ω ∈ Ω(n) with 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R and 〈ω, σ〉 ∈ Ψ(n), it is the case that
〈ω(x1, . . . , xn), σ(y1, . . . yn)〉 ∈ R.

Definition 4 (Indurkhya). A cognitive relation 〈R,Ψ〉 of a cognitive model C =
〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 is called coherent if it is locally coherent in A and B.

Note that 〈R,Ψ〉 is locally coherent in A if and only if it is locally coherent in B.
In order to be able to specify further properties of cognitive models, Indurkhya intro-
duces several terms that characterize them.

Definition 5 (Indurkhya). Let C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 be a cognitive model.

1. x ∈ 〈A,Ω〉 is called relevant if 〈R,Ψ〉(x) 6= ∅. If every x ∈ 〈A,Ω〉 is relevant,
C is called full.

2. If 〈R,Ψ〉(x1) = 〈R,Ψ〉(x2) for x1, x2 ∈ 〈A,Ω〉, x1 and x2 are called synony-

mous. If there is no pair of synonymous distinct entities in 〈A,Ω〉, C is called
optimal.

3. An element y of the environment 〈B,Σ〉 is said to be visible if 〈R,Ψ〉−1(y) 6=
∅. If every element of the environment is visible, the cognitive model is called
complete.

4. If the grouping induced by the cognitive relation 〈R,Ψ〉 on the environment is
pairwise disjoint, the cognitive model is called unambiguous.
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5. Two items x, y ∈ 〈B,Σ〉 are indistinguishable if 〈R,Ψ〉−1(x) = 〈R,Ψ〉−1(y).
If there is no pair of indistinguishable elements, C is called fully resolved.

Relevant entities of the source concept network are therefore all these that are used
for interpreting the environment. Two synonymous entities are both related to the
same set of objects or transitions of the environment. In an optimal cognitive model
distinct elements of the source concept network are related to distinct sets of entities
of the environment. An entity being visible means that the agent has a concept of
it. In an unambiguous cognitive model, for each entity in the environment there is
at most one corresponding one in the source concept network and therefore it never
happens that there is more than one way of interpreting an entity of the environment.
If the cognitive model is fully resolved the agent is able to distinguish between all the
transitions and objects in the environment.

3.1.2 Modeling Analogies

After this overview of the central formal concepts of Indurkhya’s theory, let us now
consider how analogies can be modeled in this framework. Analogies and metaphors
can roughly be described as processes of ’seeing something as something else’ [16]. In
Indurkhya’s theory, such processes can be modeled as a non-standard interpretation
of the environment [25].
The target is interpreted in terms of the concept network of the source item. In the
case of the Rutherford analogy, this means that the atom system is interpreted using
the concept network of the solar system. In general, such a process is similar to the
perceptual processes described above; it just takes place at a higher level, i.e. as a
relation between two concept networks. If we come back to the constraints for the
cognitive model (cf. Definition 2), we can see that they make sense for analogies as
well. In case of analogies, the first condition for the cognitive relation ensures that
every operator of the target domain can be interpreted as an operator of the source
domain. If this were not the case, the analogy would be perceived as inconsistent
since there would be transitions in the target domain that do not have counterparts
in the source and thus cannot be explained in terms of source operators.
The structural similarity of source and target, which is ensured by this condition, is
a reasonable constraint for analogies as well because structural overlap of source and
target makes it easier to understand the analogy1. The second condition, which says
that the relevant part of the concept network is itself a finitely generated concept
network, can be interpreted for the modeling of analogies as follows: One might have
an immense amount of knowledge of the source domain under consideration but for an

1In [30], empirical evidence is given for the impact of structural overlap of source and target
domain on the performance of humans in analogical problem solving tasks.
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interpretation only a relatively small subset might be relevant. In order to interpret
the Rutherford analogy in the intended way, the knowledge one might have of the
material of the Jupiter surface is not relevant. The relevant subset of the source should
be consistent; this corresponds to the fact of the source being a concept network.

Indurkhya’s theory is applied to analogies in a character string domain, similar to the
one Copycat is operating in [4, 5]. The objects in this domain are strings of charac-
ters and the operators represent different kinds of pattern regularities like iteration,
symmetry, concatenation and alternation. Atomic elements are single characters or
groups of characters that are perceived as indivisible units. The general idea of this
model is similar to that of Falkenhainer’s Copycat [22]: Given a proportional analogy
problem in the string domain, i.e. given two strings A and B and a third string
C, a string D has to be found such that A : B :: C : D. This is done by first
finding appropriate representations of the given strings using the operators. Then
these representations are evaluated by calculating their information load [37], which
represents the complexity of the chosen representations. In the next step, the repre-
sentations with the lowest information loads are chosen and the string D is computed
by applying the rule that transforms A into B to C. Choosing representations with
low information loads is related to the tendency of humans to prefer simple patterns
over more complex ones. Consider the following example: The preferred perceptual
pattern of abccba is seeing it as a symmetry structure made of the string abc, which
itself is a successor structure of three items starting with a. An alternative would be
seeing abccba as a symmetry pattern made of the string ab (a successor structure of
two items staring with a) with the item cc in between. The second representation is
less preferred because it is more complex.

3.2 Heuristic-Driven Theory Projection

Indurkhya’s approach seems to be suitable only for domains that can be formalized
in a rather simple algebraic way. Heuristic-driven theory projection (HDTP) [20]
takes into account this deficiency of the former approach. A theory for modeling
the interpretation of metaphoric expressions is proposed. It is based on an algebraic
framework as well, but in contrast to the approaches mentioned so far, it represents
source and target domain as theories, i.e. as sets of facts and laws, and can thereby
model metaphors and analogies in domains that require full first-order logic for repre-
sentation. Another deficiency of the previously described approaches is that usually
it is presupposed that source and target are taken from the same domain. Thus,
only a restricted subset of analogies can be modeled. In contrast, HDTP can be used

13



3 Algebraic Approaches to Analogy

to model analogies between two different domains that are encoded in two different
theories [20].

3.2.1 The Underlying Assumptions

This approach builds upon the hypothesis that there is a strong similarity between
some types of metaphors and analogies2. That this assumption is reasonable can be
illustrated by the following example [20]:

1. Gills are the lungs of fish.

2. Gills are to fish as lungs are to mammals.

The proportional analogy (2) expresses the same meaning as the metaphor (1) but
in a more explicit way. Because of these similarities to analogies, the interpretation
of metaphoric expressions can be investigated formally with the same methods that
are known from modeling analogical reasoning.
Another hypothesis, the approach presented in [20] builds on, is that there is more
information given about the source than about the target. This corresponds to the
idea that analogy (especially predictive analogy) can be seen as a process of applying
knowledge of a known situation to a less familiar one.

3.2.2 Modeling the Domains

In HDTP source and target domain are modeled as sets of axioms, which induce
respective theories.
If we come back to the Rutherford analogy and the SME model of it, one might
have noticed that the modeling of the domains seems in some respect inappropriate.
The attracts-relation in the target domain is not primarily based on the fact that
the mass of the nucleus is greater than the mass of the electron, as it is modeled in
SME, but it is rather caused by the difference in electric charge. This is not modeled
in an appropriate way. Furthermore, the fact that the electron revolves around the
nucleus is explicitly given in the target domain as it is modeled in SME. This seems
counterintuitive in some cases where the analogy is used to explain Rutherford’s
atom model to someone who does not know it yet. In such a case, the fact that the
electron revolves around the nucleus is rather thought to be what can be inferred
from the analogy. It can be seen as a new fact that is transferred from the source and
introduced to the target. One important feature of HDTP is that only known facts
are given in the target. In case of analogies in naive physics, the initial representation
of the target domain contains only facts that can be objectively measured or that

2Support of this hypothesis is given in [14].
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can be found out experimentally. That the electron is revolving around the nucleus
cannot be measured and is therefore not part of the representation of the initial
target domain. The target domain, as it is modeled in HDTP, contains information
about the differences in charge and mass of nucleus and electron and the fact that the
distance between them is always greater than zero, which is the result of Rutherford’s
scattering experiment.

In contrast to Indurkhya’s theory, in HDTP a many-sorted algebra is used for repre-
sentation. Therefore, it can be represented explicitly that objects can be of different
sorts and operators can have sortal restrictions.

Definition 6 (Gust, Kühnberger, Schmid). A many-sorted signature Σ is a set
Σ = {SortΣ, FuncΣ, T ypeΣ}. SortΣ is a partially ordered set of sorts, FuncΣ is a
finite set of function symbols and TypeΣ is a function, TypeΣ : FuncΣ → Cl(SortΣ),
where Cl(SortΣ) is the closure of sorts under products.

Then a term algebra can be defined:

Definition 7 (Gust, Kühnberger, Schmid). Given a many-sorted signature Σ, the
term algebra Term(Σ, V, C) relative to a set of sorted variables V = {x1 : s1, x2 :
s2, ...} with si ∈ Cl(SortΣ), and a finite set of constants C = {a1 : s1, . . . , an : sn}
with sj ∈ Cl(SortΣ), is defined as the smallest set such that the following conditions
hold:

1. If x : s ∈ V is given, then x : s ∈ Term(Σ, V, C).

2. If a : s ∈ C is given, then a : s ∈ Term(Σ, V, C).

3. If f ∈ FuncΣ, T ypeΣ(f) = s1 × s2 × · · · × sn → s and ∀i ∈ {1, 2, . . . , n} :
TypeΣ(ti) = si is given, then f(t1, . . . , tn) ∈ Term(Σ, V, C)
and TypeΣ(f(t1, . . . , tn)) = s.

The sets of terms of source and target are represented as term algebras, denoted by
TermS and TermT respectively. For the representation of source and target domains,
first-order predicate languages relative to the respective term algebras are defined.

Definition 8 (Gust, Kühnberger, Schmid). The languages LS and LT of source
and target domain respectively are standard many-sorted first-order predicate logic
languages relative to a given term algebra Term(Σ, V, C). The following sub-languages
can be specified (sortal restrictions are omitted in order to simplify readability):

Terms t := x | c | fn(t1, . . . , tn)
Logical constants l := ∧ | ∨ | → | ↔ | ¬ | ∀ | ∃ | =
Atomic (well-formed) formulas α := t = t′ | Rn(t1, . . . , tn)
Well-formed formulas φ := α | φ ∧ ψ | φ ∨ ψ | ¬φ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ
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3 Algebraic Approaches to Analogy

Given these languages, the theories of source and target can be defined. They are
given by a finite set of axioms that specify the facts that hold in the domains and the
laws that can be used to derive new facts.

Definition 9 (Gust, Kühnberger, Schmid). A theory Th of a language L is specified
as a consistent and finite set of well-formed formulas of L of the following form:

Facts: α := Rn(t1, . . . , tn) | t = t′ | α ∧ β | α ∨ β
Laws: φ→ ψ | ∀xφ | ∃xφ

3.2.3 Establishing an Analogical Relation

Unlike the theory presented in [25], HDTP not only describes the properties of the
analogical relation between source and target but also focuses on the underlying
principles of the establishment of the relation.

An analogy expresses structural similarities of source and target domain. A general-
ization of both, source and target, or better the most specific generalization of them,
captures exactly these structural similarities. Such a generalization can be found
using anti-unification. In [19], it is shown that anti-unification can be used for mod-
eling analogical reasoning. Anti-unification is the dual notion of unification, which is
widely known (e.g. in Prolog) as a method for finding an instantiation of two terms.
The result of a unification of two terms is a term that instantiates both of the input
terms, or in other words, a term which is subsumed by the input terms.
As an example, consider the terms F (X, b) and F (a, Y ) where F is a function symbol,
X and Y are variables and the lower case letters are constants. Unifying them results
in terms that instantiate both formulas and in corresponding substitutions. In this
example, one solution is F (a, b) with corresponding substitutions X 7→ a, Y 7→ b.
Conversely, the result of an anti-unification of two terms is a third term that sub-
sumes the two given ones together with corresponding substitutions that denote
how the more specific terms can be generated from the anti-instance. Given the
terms F (a, b) and F (X, c), a possible anti-instance is F (X, Y ) with substitutions
θ1/θ2 : F 7→ F/F, X 7→ a/X, Y 7→ b/c. Of course, when anti-unifying two terms,
the trivial anti-instance Z (where Z is a variable not contained in the terms that
are anti-unified) is always a solution. What is of interest, is a set of anti-instances
that is most specific, minimal and complete because it carries maximal information
about the structure both input terms have in common (cf. [20] and [39] for a de-
tailed description of such sets of anti-instances). In case of the term algebras used
in HDTP, a substitution on terms is a partial function mapping variables to terms:
θ : V → Term(Σ, V, C), θ = {x1 7→ t1, . . . , xn 7→ tn}, for xi 6= xj, if i 6= j. Substitu-
tions are extended recursively to complex terms:
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Definition 10 (Gust, Kühnberger, Schmid). Given a term algebra Term(Σ, V, C)
and a substitution θ : V → Term(Σ, V, C), a function sub is recursively defined:

sub(θ, c) = c if c is a constant
sub(θ, v) = value(θ, v) if v ∈ dom(θ)
sub(θ, f(t1, . . . , tn)) = f(sub(θ, t1), . . . , sub(θ, tn))

with dom(θ) = {x|x 7→ t ∈ θ}
range(θ) = {t|x 7→ t ∈ θ}
value(θ, v) = t if v 7→ t ∈ θ

For modeling analogies that involve whole theories, the method of anti-unification
has to be extended such that not only terms but also complex formulas can be anti-
unified. For finding a generalization of complex terms, first-order anti-unification
is usually not sufficient but anti-unification of higher order is needed. In [20], it is
shown that a subset of second-order problems can be specified that can be reduced to
first-order problems3. For this purpose, equational theories ES and ET for source and
target theories are introduced. They contain equations in solved form and thereby
specify how terms can be replaced by equivalent ones. Source and target theories
can be expanded relative to these equational theories. In order to reduce second-
order operations to first-order ones, new function symbols are introduced, which can
be used instead of the old ones, where the arguments are permuted or replaced by
subterms. This expansion does not result in infinitely many computations because
there is only a finite number of subterms (cf. [20] for a more detailed investigation
of this argument). The resulting new terms can be used for anti-unification, and a
first-order anti-unification of them is equivalent to a second-order anti-unification of
the original ones. Using this method, a subset of second-order anti-unification can be
reduced to first-order operations. This subset seems to be sufficient for the modeling
of analogies and metaphors [20].
The establishment of an analogical relation between source and target theory is per-
formed by the heuristic algorithm HDTP-A4. As input, it is provided with the axioms
specifying source and target theories. Given these sets of axioms that induce source
and target theories, ThS and ThT respectively, HDTP-A generates a set of axioms G
that induces a theory ThG, which is a generalization of source and target theories.
HDTP-A also computes corresponding substitutions that specify how the axioms of
source and target theory can be generated from the ones of ThG. By-products of the
algorithm are modified source and target theories ThAh

S and ThAh

T respectively.

3A similar idea is presented in [39] in the domain of analogical programming.
4The description given here is based on the implementation in [19].
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HDTP-A can be sketched as follows (taken from [20]):

T = axioms of the target domain sorted by a heuristics h
S = axioms of the source domain
G = empty list of axioms of the generalized theory
θ1 = θ2 = empty substitutions
ThAh

T
= ThT

FOR ψ ∈ T
ψ = normal form(ψ)
SELECT φ ∈ S

φ = normal form(φ)
IF not same structure(φ, ψ) REJECT
SELECT(ξ, θ1, θ2) ∈ anti instances(φ, ψ, θ1θ2)

WITH ξ best according to a heuristics h′

IF h′(ξ) > a given threshold
ADD ξ to G
ADD ξθ2 to ThAh

T

REMOVE φ from S
ELSE FAIL

END FOR
FOR φ ∈ S

ψ = transfer(φ, θ1, θ2)

IF TAh

T
` ¬ψ CONTINUE

IF oracle(ψ) = FALSE CONTINUE

ADD ψ to TAh

T

ADD generalize(φ, θ1) to G
END FOR

First, the input axioms are converted into a normal form (e.g. conjunctive normal
form) because then it can be determined if they have equivalent structures. Then
axioms from the target description are selected and matched to the ones of the source.
The selection of target items is guided by a heuristics h. Appropriate heuristics,
which can be used here, are ones that ensure that simple axioms are selected first5.
Another heuristics, which reflects a similar idea as Gentner’s systematicity principle,
is one that says that axioms that maximize the number of shared terms with already
generalized axioms are chosen first.
If a source axiom with identical structure is found, they are generalized. An anti-
instance that is best according to a certain heuristics is chosen from the set of possible
anti-instances. At this step of the algorithm, one can use heuristics that ensure
that ’good’ (i.e. cognitively preferred) anti-instances are chosen first. A possible
heuristics that can be used is one which ensures that substitutions of minimal length
are chosen first. It reflects the fact that humans usually prefer simple solutions
over more complex ones. Another possibility is to use a heuristics saying that anti-
instances with minimal number of second-order objects are preferred. It reflects a

5’simple’ refers to a minimal number of embedded subterms and logical operators and a minimal
arity of embedded relations.
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similar idea as the first heuristics because second-order substitutions result in stronger
structural changes than first-order ones and this leads to more complex solutions as
well. After all target items have been anti-unified with corresponding source items,
remaining source axioms that have not been anti-unified so far are transferred to the
target. This is an important feature of HDTP because it models the creative aspects
of analogy and the introduction of new concepts to the target domain. Before the
actual transfer, it is checked whether transferring the axiom to the target theory would
result in inconsistencies with the rest of the target. It is checked if the transferred
axiom would lead to a contradiction in the theory and additionally an oracle is used,
which represents an experiment. Only if the outcome of the experiment is consistent
with the transferred version of the axiom, it is transferred to the target theory and
a generalization is added to the the generalized theory. As many source axioms as
possible are transferred to the target. This models the fact that interpretations with a
large number of consistent correspondences between source and target are cognitively
preferred.
This results in an enrichment of the target theory. On the source side, only facts and
laws that have been anti-unified with corresponding items of the target are deleted
from the initial set and added to ThAh

S , the resulting source theory (this is not repre-
sented in the pseudo code above). The source theory is thereby reduced to a subset
that has corresponding counterparts in the target and therefore it represents the
subset of the source that is actually used for interpreting the target.

The analogical relation between the modified source and target theories is defined as
follows6:

Definition 11. Given the theories ThAh

S and ThAh

T with corresponding models MS

and MT and a coproduct operation (disjoint union) ⊕, an analogical relation

R ⊆ (ThAh

S × ThAh

T ) ⊕ (TermS × TermT )

of theories is a set of pairs 〈x, y〉 such that it holds that:

1. If 〈φ, ψ〉 is a pair of formulas, then 〈φ, ψ〉 ∈ R if and only if there exists g ∈
ThAh

G such that (g, {θ1, θ2}) is an anti-instance of φ and ψ and ThAh

S ∪ ES `
gθ1 ↔ φ and ThAh

T ∪ ET ` gθ2 ↔ ψ.

2. If 〈s, t〉 is a pair of terms, then 〈s, t〉 ∈ R if and only if there exists g ∈ ThAh

G

such that (g, {θ1, θ2}) is an anti-instance of s and t and ES ` gθ1 = s and
ET ` gθ2 = t.

3. There exists a model MS such that MS |= ThAh

S if and only if there exists a
model MT such that MT |= ThAh

T .

6The definition, used here, is actually stronger than the one given in [20].
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The syntactic constraints can be illustrated graphically:
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The conditions can also be formulated in the following way: For terms s ∈ TermS

and t ∈ TermT , 〈s, t〉 ∈ R if and only if ES ` s = tθ−1
2 θ1 and ET ` t = sθ−1

1 θ2.

Analogously, for formulas φ ∈ ThAh

S and ψ ∈ ThAh

T , 〈φ, ψ〉 ∈ R if and only if ThAh

S ∪
ES ` φ↔ ψθ−1

2 θ1 and ThAh

T ∪ ET ` ψ ↔ φθ−1
1 θ2.

3.2.4 How HDTP Differs from other Approaches

As noted in [10], SME is only able to match the statements ”louder(Fred, Gina)”
and ”bigger(Bruno, Peewee)” if they are represented as ”greater (loudness(Fred),
loudness(Gina))” and ”greater(size(Bruno), size(Peewee))”7. SME can only match
relations that have identical names. In this respect, HDTP shows more flexibility
because relations can be matched irrespectively of having the same names or not.

One important feature of HDTP is that it is able to represent metaphors and analogies
in domains that are more complex and cannot be represented in a simple algebraic
way. Moreover, it provides more insight into the processes that underlie the estab-
lishment of the analogical relation than the theory presented in [25]. In Indurkhya’s
approach, it is not examined further how exactly the cognitive relation is established.
In HDTP, a general theory is computed, which is a description of both source and
target. Such a generalization and the corresponding substitutions specify how the
analogical relation is established. Another difference to the other approaches is that
the analogical relation, induced by the algorithm HDTP-A, exists not only purely
syntactically but also the semantic level is clearly specified.

In contrast to SME, HDTP also models the introduction of new concepts into the
target domain. Thus, the processes of learning and inductive inference are modeled
in a more appropriate way. In SME, this creativity is not taken into account because
the concepts have to be given explicitly in the initial representations of the target
domain.

In this section, two approaches to analogy were presented, which, as opposed to
other approaches, also give formal specifications of the underlying structures of analo-
gies. They have both been successfully applied to several examples of analogies and

7This holds for the implementation of SME that is presented in [8].
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metaphors. This indicates that an algebraic framework seems to be appropriate to
provide a formal base for models of analogy. In both approaches, the analogy is repre-
sented as a relation between two domains. These relations ensure a certain degree of
structural similarity between source and target domain. In order to be able to char-
acterize both relations, i.e. the cognitive relation and the analogical relation, more
precisely, in the next section the concept of bisimulation will be presented. Bisimu-
lation also describes structural similarity. Then the central relations of Indurkhya’s
theory and HDTP will be compared each other and to bisimulation.
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4 Bisimulation

In this section, I will give an overview of the notion of bisimulation. Different domains
will be presented in which bisimulations are used to express structural equivalences.
A bisimulation is a binary relation that expresses structural identity without being
isomorphic. The concept of bisimulation has its origins in the domain of concurrent
processes and in modal logic; it is also used in various other fields, e.g. game theory
and coalgebra.

4.1 Bisimulation in the Field of Concurrent Pro-

cesses

The notion of bisimulation was first introduced by Park [28] and by Milner, who used
it in the context of his calculus of communicating systems (CCS) [26, 27], a theoretical
framework for modeling concurrent processes. In CCS, dynamic systems are modeled
as labeled transition systems.

Definition 12 (Milner). A labeled transition system S is a triple S = (S,A,→S),
where S is a set of states, A a set of labels (or actions) and →S⊆ S ×A× S a set of
transitions. Instead of writing 〈s, a, s′〉 ∈→S, usually the notation s

a
−→S s

′ is used.

Labeled transition systems with a finite number of states can be represented in a
nice way by directed graphs where the vertices represent the states of the system
and the labeled arcs represent the transitions. Labeled transition systems can be
nondeterministic: From one state there might be several transitions with the same
label leading to different states.
Consider the following example:

p q

r s
b b

b

a

aa

a b
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When comparing both systems, it is quite obvious that their behavior is equivalent
although they look different.
The motivation for introducing the notion of bisimulation is that for an external
observer two systems seem to be equivalent if their behavior is identical.
This idea is represented in the notion of strong bisimilarity.

Definition 13 (Milner). Let S = (S,A,→S) and T = (T,A,→T ) be labeled transition
systems.

1. let s1 ∈ S and t1 ∈ T , then R ⊆ S × T is a strong bisimulation for s1 and
t1 if 〈s1, t1〉 ∈ R and ∀〈s, t〉 ∈ R, a ∈ A it holds that

(a) if s
a

−→S s
′, ∃t′ ∈ T with t

a
−→T t

′ and 〈s′, t′〉 ∈ R and

(b) if t
a

−→T t
′, ∃s′ ∈ S with s

a
−→S s

′ and 〈s′, t′〉 ∈ R.

2. S and T are strongly bisimilar if there is a strong bisimulation for their initial
states.

In the example above, the relation R = {〈p, s〉, 〈q, s〉, 〈r, s〉} is a strong bisimulation
between both systems.

Properties of Bisimulations [34]:

• Let S = (S,A,→S) be a labeled transition system. Then the identity relation
idS with idS(s) = s, ∀s ∈ S, is a bisimulation for S and S

• Let T1, T2 and T3 be labeled transition systems. If R is a strong bisimulation
between T1 and T2 and R′ is a strong bisimulation between T2 and T3, then the
composition of R and R′ is a strong bisimulation between T1 and T3.

• If R is a strong bisimulation for transition systems T1 and T2, R
−1 is a strong

bisimulation for T2 and T1.

Labeled transition systems can have a special transition that is referred to as internal
or silent transition; it is symbolized as a transition having the label τ and represents
actions of the system that are invisible to an external observer. By performing a
silent transition, a system can change its current state without an observer noticing
it.
In some cases, one is only interested in the observable behavior of a system. This is

represented by writing s
a

=⇒ s′ for s
τk

−→
a

−→
τ l

−→ s′, with k, l ∈ N, where
τn

−→, n ∈ N,
stands for a sequence of n τ -transitions. Since silent transitions cannot be observed,
it is reasonable to relax strong bisimilarity to a weaker notion of bisimilarity that is
closer to what one would consider as observational equivalence [26] because it is only
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based on the observable behavior of a system. In cases where one has no information
about the internal structure of a system, there is no other way of describing the
system than describing it in terms of the observable behavior.

Definition 14 (Milner). Let S = (S,A,→S) and T = (T,A,→T ) be labeled transition
systems.

1. Let s1 ∈ S and t1 ∈ T , then R ⊆ S × T is a weak bisimulation for s1 and t1
if 〈s1, t1〉 ∈ R and ∀〈s, t〉 ∈ R, a ∈ A it holds that

(a) If s
a

=⇒S s
′, ∃t′ ∈ T with t

a
=⇒T t

′ and 〈s′, t′〉 ∈ R and

(b) if t
a

=⇒T t
′, ∃s′ ∈ S with s

a
=⇒S s

′ and 〈s′, t′〉 ∈ R.

2. S and T are weakly bisimilar if there is a weak bisimulation for their initial
states.

Weakly bisimilar systems are indistinguishable by an observer and can be seen as
two black boxes that respond in the same way when one interacts with them1 [2].
As investigated by Taubner in [34], there are various other notions of equivalences
between states of transition systems, each of them capturing a different aspect of
the systems. One example is trace equivalence: Two states are trace equivalent if
they have the same possible sequences of actions2 starting from them. It has been
found out that apart from isomorphism, strong bisimilarity is the finest equivalence
for states of a labeled transition system (cf. [34] for a proof). This shows that strong
bisimilarity is a relatively strong notion for expressing equivalences. Depending on
the kind of dynamic processes under consideration and the characteristics that are of
interest, different variations of bisimulations exist. In [38], a hierarchy of 155 variants
of bisimulations and bisimulation-like equivalences is developed.
Examples such as the following one illustrate that it is reasonable to consider a more
general notion of bisimulation that allows the labels of the outgoing transitions of
bisimilar states to be nonidentical.

Example 1. Let S = (S,AS,→S) and T = (T,AT ,→T ) be labeled transition systems
represented by the following graphs:

s1 s2

s3

s4

s5 t1 t2 t3

t4

t5

a
b

b

c

c

d e
f

f

1Obviously, the same holds for strongly bisimilar systems.
2A possible sequence of actions is a sequence of labels corresponding to a sequence of transitions

that can be performed starting in this state.
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Since there is no pair of identical labels, a bisimulation cannot be established, but
nevertheless, the structures of both systems seem to be equivalent on a more general
level. This idea is investigated more formally in [11], where the definition of bisimula-
tion is relaxed and weak and strong generalized bisimulation with respect to a relation
are introduced.

Definition 15 (Galpin). Let S = (S,AS,→S) and T = (T,AT ,→T ) be labeled tran-
sition systems and let B ⊆ AS ×AT . R ⊆ S × T is a strong generalized bisimu-

lation with respect to B such that 〈s, t〉 ∈ R only if

1. For all aS ∈ AS, whenever s
aS−→S s

′, there exists t′ ∈ T and aT ∈ AT such that
t

aT−→T t
′, 〈aS, aT 〉 ∈ B and 〈s′, t′〉 ∈ R.

2. For all aT ∈ AT , whenever t
aT−→T t

′, there exists s′ ∈ S and aS ∈ AS such that
s

aS−→S s
′, 〈aS, aT 〉 ∈ B and 〈s′, t′〉 ∈ R.

In Example 1, R = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t3〉, 〈s5, t4〉, 〈s5, t5〉} is a strong gener-
alized bisimulation with respect to B = {〈a, d〉, 〈b, e〉, 〈c, f〉}.

In Section 5.1, it is shown that a variation of a generalized bisimulation with respect
to a relation can be used to describe structural similarities of source concept network
and environment in Indurkhya’s framework.

4.2 Bisimulation from a Game Theoretic Perspec-

tive

Bisimulation is also a central notion in game theory. The relation between the no-
tions of bisimulation we have considered so far and the one used in game theory
is investigated by Stirling [32, 33]. Bisimulation in game theory is associated with
Ehrenfeucht-Fräıssé games. These games are used in various applications in theoret-
ical computer science [35].

One motivation for introducing a game characterization of bisimilarity is the following:
Given a labeled transition system, how can we determine whether two states s and t
are not bisimilar? According to the definition of bisimilarity of two states, one has to
find all binary relations containing the pair 〈s, t〉 and check if they are bisimulations or
not. If one can find a relation that is a bisimulation, s and t are bisimilar. Otherwise
they are not. This method is very expensive: For a transition system with n states,
one would have to check up to 2n2

binary relations. As argued in [31], an alternative
way to find out whether two states are not bisimilar is by playing a bisimulation
game:
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Definition 16 (Srba). Let S = (S,A,→) be a labeled transition system. A strong

bisimulation game G〈s, t〉 with initial configuration 〈s, t〉 with s, t ∈ S is a sequence
〈s, t〉, 〈s1, t1〉, . . . with si, ti ∈ S. Two players, Spoiler and Duplicator, play it. The
game is played in rounds where each round consists of the following steps:

1. Spoiler makes the first move by choosing either

(a) a transition s
α

−→ s1 or

(b) a transition t
α

−→ t1.

2. Then it is Duplicator’s turn. If Spoiler has chosen (a), he has to find a transition
t

α
−→ t1, if Spoiler has chosen (b), Duplicator has to find a transition s

α
−→ s1.

3. 〈s1, t1〉 becomes the current configuration and the game continues as described
above.

Note the difference between the actions of the two players: Spoiler can choose one
of the states of the current configuration and a transition starting from this state,
whereas Duplicator can only choose a transition with the same label as Spoiler’s
transition. The game ends when one of the players cannot make a move; this player
looses the game. Whenever the game is infinite, Duplicator wins. In other words: If
Duplicator cannot find a move that matches Spoilers move, Spoiler wins. If Duplicator
can match all of Spoilers moves or if the current configuration is a dead end (both
states of the current configuration have no outgoing transitions), Duplicator wins. Of
course, a bisimulation game can also be played on two different systems that have the
same sets of labels; the game can be played on the disjoint union of both systems.

The outcome of a bisimulation game reveals information about the structural simi-
larity of the states of the initial configuration. The game theoretic background of this
is given in [35].

Definition 17 (Stirling). Let S = (S,A,→S) be a labeled transition system. s, t ∈ S
are said to be strongly game equivalent if and only if Duplicator has a universal
winning strategy3 for the game G〈s, t〉.

An important result is that strong game equivalence is equivalent to strong bisimi-
larity: Two states of a labeled transition system are strongly game equivalent if and
only if they are strongly bisimilar.
Let S = (S,A,→) be a transition system and let s, t ∈ S. Assume s and t are
strongly game equivalent. In order to show that there is a bisimulation between
them, let R = {〈s, t〉| s and t are strongly game equivalent}. Since s and t are

3Duplicator having a universal winning strategy means that he can always win the game irre-
spectively of the moves chosen by Spoiler.
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strongly game equivalent, we know that Duplicator can win all games G〈s, t〉. This
means that for all outgoing transitions from either s or t there is a corresponding one
from the other state such that the resulting states s′ and t′ are again strongly game
equivalent and thus, 〈s′, t′〉 ∈ R. Hence, R is a bisimulation.
Now assume that R is a bisimulation and 〈s, t〉 ∈ R. Then in the game G〈s, t〉 Dupli-
cator can respond to all of Spoilers moves in a way that the resulting configuration
is a pair of states that is in R as well because that is exactly what the definition of
bisimulations says. Therefore, whenever Spoiler is able to make a move, Duplicator
can respond with a corresponding one and the game continues until Spoiler is stuck.
Hence, s and t are strongly game equivalent.

Example 2. In these graphs, s1 and t1 are strongly game equivalent.

s1 s2

s3

s4

s5 t1 t2 t3

t4

t5

a
b

b

c

c

a b
c

c

It can easily be seen that Duplicator can win every game G〈s1, t1〉.

Example 3. Here, s1 and t1 are not game equivalent.

s1

s2

s3 s4

a

b c

t1

t2 t3

t4 t5

a a

b c

When the game G〈s1, t1〉 is in configuration 〈s2, t2〉, Spoiler can simply choose s2
c

−→
s4 and Duplicator cannot match her move. In configuration 〈s2, t3〉, Spoiler can

choose s2
b

−→ s3 and again, Duplicator cannot respond. So, Spoiler can win all
games G〈s1, t1〉 and s1 and t1 are not bisimilar.

These examples show that game theory provides a quite simple and illustrative way
to check if two states of a transition system are strongly bisimilar or not4.
We can also introduce a game characterization of a generalized strong bisimulation
with respect to a relation.

Definition 18. Let S = (S,AS,→S) and T = (T,AT ,→T ) be labeled transition
systems and let B ⊆ AS × AT be a relation on the sets of labels. A generalized

strong bisimulation game with respect to the relation B GB〈s, t〉 with initial

4A weak bisimulation game can be defined analogously by replacing the −→ with =⇒ in Definition
16.
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configuration 〈s, t〉, s ∈ S, t ∈ T is a sequence 〈s, t〉, 〈s1, t1〉, . . . with si ∈ S, ti ∈ T .
Two players, Spoiler and Duplicator, play it. It is played in rounds where each round
consists of the following steps:

1. Spoiler makes the first move by choosing either

(a) a transition s
α

−→ s1 or

(b) a transition t
α

−→ t1.

2. Then it is Duplicator’s turn. If Spoiler has chosen (a), Duplicator has to find a

transition t
β

−→ t1 with 〈α, β〉 ∈ B.

If Spoiler has chosen (b), Duplicator has to find a transition s
β

−→ s1 with
〈β, α〉 ∈ B.

3. 〈s1, t1〉 becomes the current configuration and the game continues as described
above.

Analogously to Definition 17, generalized strong game equivalence with respect to a
relation can be defined which is, as one might expect, equivalent to strong generalized
bisimilarity with respect to a relation. As an example, one can play a bisimulation
game with respect to the relation B on the graphs given in Example 1.

4.3 Bisimulation from a Coalgebraic Perspective

In this part, a more abstract approach to bisimulation via coalgebras is presented.
Coalgebras are the dual of algebras. Whereas in algebra, one is concerned with how
something is constructed, in coalgebra the interest is in decomposition and observable
behavior. In contrast to algebras, we do not know how exactly a coalgebra is made
up and it is more like a black box. One can just observe what happens when it
breaks into parts. This is an important feature that shows that certain things can be
modeled with coalgebras that cannot be modeled with algebras because of a lack of
information about the exact construction of the entity under consideration.

As seen in the previous subsections, bisimulations are mainly used to describe equiv-
alences based on the behavior of dynamic systems. State-based dynamic systems can
be represented in a uniform way [18, 29]. All types of state-based systems are similar
in that they consist of a set of states and a set of transitions that map sets of states to
another set of states or to a set of states and an action, e.g. an output or a label. This
can be formalized by the following map: α : S → F (S), which is called F-transition
structure. F is a functor that maps every set X to a new set F (X) and that maps a
map f : X → Y , with X and Y being sets, to a new map F (f) : F (X) → F (Y ).
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Definition 19 (Gumm). A coalgebra of type F is a pair 〈S, αS〉 with S being a
set and αS a map with αS : S → F (S).

For a labeled transition system S = (S,−→S, A) we have the functor FL(S) ⊆ A×S.
Then a labeled transition system (S,−→S, A) can be represented as a tuple 〈S, αS〉
with αS : S → FL(S), s 7→ {〈a, s′〉|s

a
−→S s

′}.
Now a homomorphism between systems (coalgebras) can be defined:

Definition 20 (Rutten). A homomorphism between coalgebras of type F, 〈S, αS〉
and 〈T, αT 〉, is a function f : S → T such that αT ◦ f = F (f) ◦ αS, i.e. the following
diagram commutes:

F (S) F (T )
F (f)

//

S

F (S)

αS

��

S T
f

// T

F (T )

αT

��

In Subsection 4.1, bisimulation was defined as a relation between states of a system
that are indistinguishable by an external observer. For coalgebras, bisimulations are
defined in the following way:

Definition 21 (Rutten). A bisimulation between coalgebras of type F, 〈S, αS〉 and
〈T, αT 〉, is a binary relation R ⊆ S×T such that a transition structure αR : R → F (R)
can be defined, with projections π1 : R → S, 〈s, t〉 7→ s and π2 : R → T , 〈s, t〉 7→ t
being homomorphisms.

This can be illustrated as a commuting diagram:

F (S) F (R)oo

F (π1)

S

F (S)

αS

��

S Roo
π1

R

F (R)
��

F (R) F (T )
F (π2)

//

R

F (R)

αR

��

R T
π2 // T

F (T )

αT

��

This coalgebraic version of bisimulation seems less intuitive than the ones given in
the previous subsections. Comparing a bisimulation for labeled transitions systems
to the coalgebraic one shows that both definitions of bisimulation are equivalent:
Let S = (S,−→S, A) and T = (T,−→T , A) be labeled transition systems and let
R ⊆ S × T be a bisimulation between S and T . Then it holds that ∀〈s, t〉 ∈ R :

1. For all s′ ∈ S, if s
a

−→S s
′, there is a t′ ∈ T with t

a
−→T t

′ and 〈s′, t′〉 ∈ R.
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2. For all t′ ∈ T , if t
a

−→T t
′, there is a s′ ∈ S with s

a
−→S s

′ and 〈s′, t′〉 ∈ R.

The systems can be represented as coalgebras 〈S, αS〉 and 〈T, αT 〉 with
αS : S → F (S), s 7→ {〈a, s′〉|s

a
−→S s

′} and αT : T → F (T ), t 7→ {〈a, t′〉|t
a

−→T t
′}.

Now let αR be a transition structure with
αR : R → F (R), 〈s, t〉 7→ {〈s′, t′〉|s

a
−→S s

′ and t
a

−→T t
′}.

Then, ∀〈s, t〉 ∈ R it holds that αS(π1〈s, t〉) = αS(s) = {〈a, s′〉|s
a

−→S s
′} and

F (π1)(αR〈s, t〉) = F (π1)({〈s
′, t′〉|s

a
−→S s

′ and t
a

−→T t
′}) = {〈a, s′〉|

a
s −→S s

′}.
Thus, αS ◦π1 = F (π1)◦αR and π1 is a homomorphism. Analogously, it can be shown
that π2 is a homomorphism.
For the converse direction, let R ⊆ S × T with transition structure αR : R → F (R)
fulfill the coalgebraic conditions for a bisimulation between 〈S, αS〉 and 〈T, αT 〉. Are
the conditions 1 and 2 for a bisimulation between transition systems satisfied?
Let 〈s, t〉 ∈ R and s

a
−→S s

′.
Then s = π1〈s, t〉 and π1〈s, t〉

a
−→S s′. Since π1 is a homomorphism, the following

diagram commutes:

F (S) F (R)oo

F (π1)

S

F (S)

αS

��

S Roo
π1

R

F (R)

αR

��

and there is a pair 〈s′′, t′〉 ∈ R with 〈s, t〉
a

−→R 〈s′′, t′〉 and π1〈s
′′, t′〉 = s′. Thus,

s′′ = s′ and 〈s′, t′〉 ∈ R.
It remains to show that t

a
−→T t

′. Since we already know that 〈s′, t′〉 ∈ R and that π2

is a homomorphism and αT (π2〈s, t〉) = F (π2)(αR〈s, t〉) = {〈a, t′〉|t
a

−→T t′}, it holds
that t

a
−→T t

′. Hence, condition 1 for a bisimulation is satisfied. Analogously, it can
be shown that condition 2 is satisfied as well.

4.4 Bisimulation in Modal Logic

Independently from the notions of bisimulation described in the previous subsec-
tions, already in 1976 bisimulation was introduced in modal logic by van Benthem as
p-relation [36]. Note that the primary concern in this subsection is to get an under-
standing of the notion of bisimulation in modal logic, and therefore I will only give
a short introduction to modal logic that covers only the concepts that are necessary
to get an idea of bisimulation in this field. In [2], bisimulations in modal logic are
studied in more detail and are used to establish various results.

Whereas classical first-order logic discriminates propositions according to whether
they are true or false, one motivation for introducing modal logic was that in natural
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language we do not only distinguish between ’true’ and ’false’ but are able to make
finer distinctions. Propositions also differ in how they are true or false. Instead
of adopting a global view, in modal logic functions are evaluated locally inside a
structure.
One important concept is that of a relational structure. A relational structure is
a nonempty set together with a relation defined on it. If we think about labeled
transition systems as sets of states with

a
−→ being a binary relation on this set, they

can be seen as simple relational structures as well.
For our purpose it is sufficient to consider only the basic modal language and not
extensions of it.

Definition 22 (Blackburn et al.). The basic modal language is defined using Φ,
which stands for a set of proposition letters, and a unary modal operator ♦ (’dia-
mond’). The well-formed formulas φ of the basic modal language are given by the
following rule:

φ := p | ⊥ | ¬φ | ψ ∨ φ | ♦φ,

where p is an element of Φ, ⊥ represents the constant falsum and ψ is a well-formed
formula.

The dual of ♦ is � (’box’), with �φ := ¬♦¬φ.
There are different readings and interpretations of the modal operators; one of the
most influential ones is reading ♦φ as ’it is possibly the case that φ’ and �φ as ’it is
necessarily the case that φ’. The branch of modal logic where the modal operators
are interpreted this way is called alethic modal logic. As mentioned above, in modal
logic functions are evaluated inside relational structures. The following definitions
make the relational structures in which the basic modal language is interpreted, more
precise:

Definition 23 (Blackburn et al.). A frame for the basic modal language is a pair
F = (W,R) with W 6= ∅ and R ⊆ W ×W .

W is often referred to as ’universe’ and the elements of W are called ’worlds’ or
’states’. A model extends a frame by contingent information about the elements of
the universe W .

Definition 24 (Blackburn et al.). A model for the basic modal language is a pair
M = (F, V ), where F is a frame (W,R) and V is a valuation function V : Φ → P(W ).
On an informal level, one can say that V maps a proposition p to the set of states
where p is true.

Models and frames are both special types of relational structures. In order to see
how truth and falsity of formulas within states of a model are defined, consider the
following definition:
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Definition 25 (Blackburn et al.). Let w be a state in a model M = (W,R, V ) and
let φ be a formula. Satisfaction of φ is defined inductively:

M, w |= p if and only if w ∈ V (p)

M, w |= ⊥ never

M, w |= ¬φ if and only if not M, w |= φ

M, w |= φ ∨ ψ if and only if M, w |= φ or M, w |= ψ

M, w |= ♦φ if and only if for some v ∈ W with wRv it holds that M, v |= φ

It follows that M, w |= �φ if and only if for all v with wRv it holds that M, v |= φ.

Models are not primarily studied in isolation, but what one is usually interested in are
relations between models and the properties that are invariant under such relations.
It is this context where bisimulations play a central role in modal logic. Roughly
speaking, a bisimulation is a relation between two models such that related states
carry identical atomic information and have equivalent transition possibilities [2].

Definition 26 (Blackburn et al.). Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be
models. Z ⊆ W × W ′, Z 6= ∅ is called a bisimulation between M and M′ if the
following conditions are satisfied:

1. If wZw′, w and w′ satisfy the same propositional letters.

2. If wZw′ and wRv, there exists v′ ∈ W ′ such that w′Rv′ and vZv′.

3. If wZw′ and w′Rv′, there exists v ∈ W such that wRv and vZv ′.

Example 4. Let M = (F, V ) and M′ = (F′, V ′) be models. The frames are repre-
sented as graphs:

F a

b

c d

F′

i

j

k

l

V (p) = {a, b, d}, V (q) = {c}, V ′(p){i, l}, V ′(q) = {j, k}.
Then Z = {〈a, i〉, 〈b, i〉, 〈c, j〉, 〈c, k〉, 〈d, l〉} is a bisimulation between M and M′.

In [17], the relation between modal logic, concurrent processes and coalgebras is stud-
ied in more detail and on a more formal level. As seen in Section 4.1, bisimulation de-
scribes equivalences of state-based systems. Hennessy and Milner [21] applied modal
logic to process algebra and used it to reason about state-based systems. They de-
veloped a modal language for this purpose. In this language, two states are bisimilar,
i.e. observationally equivalent, if and only if they satisfy the same modal formulas.
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4.5 Summarizing Bisimulations

This section has shown that bisimulation is a powerful notion for describing equiv-
alences of state-based systems. Such systems can be represented as coalgebras, and
structural equivalences of coalgebras can be described by bisimulations. Another
abstract way of representing state-based systems is as relational structures. Modal
logic provides various tools for reasoning about relational structures. In modal logic,
bisimulation is not only used as a structure preserving relation between models but is
a key notion which plays a central role in important theorems. In its game theoretic
version, bisimilarity is characterized by the outcome of Ehrenfeucht-Fräıssé games
that can be played on graph-like structures.

There is another field where bisimulations are used, which is not mentioned in this
section. This is non-well-founded set theory [1], which allows sets to be members of
themselves. Such sets can be represented as graphs and are said to be bisimilar if
their graphs are bisimilar.

The character of bisimilarity as structural equivalence and the fact that it is success-
fully used in various domains justify that it could be reasonable to investigate how
far analogies can be seen as bisimulations since, as explained in Section 2, analogy is
a way to establish and describe structural similarities, too.
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In this section, the idea that bisimulation might be suitable for describing analogies
will be investigated on a formal level by comparing the central relations, modeling the
connection between source and target, of the approaches presented in Sectionn 3 to
bisimulation. In Indurkhya’s theory, a coherent cognitive relation ensures structural
similarity of source and target. The counterpart in HDTP is the analogical relation,
which is induced by the algorithm HDTP-A.

5.1 Coherency and Bisimilarity

Coherent cognitive relations and the notions of bisimulation we have considered so
far are from different domains. For this reason, we cannot compare them directly but
will first consider how a bisimulation in the domain of Indurkhya’s cognitive models
would look like.

5.1.1 Bisimulation in Indurkhya’s Framework

The notion of bisimulation has to be translated into the language of Indurkhya’s the-
ory. One difference between a coherent cognitive relation and the classical definition
of bisimulation is that a bisimulation is a binary relation over sets of states, whereas
the cognitive relation in Indurkhya’s cognitive models relates operators as well. In
Indurkhya’s framework, there are no transitions but n-ary operators; performing a
transition starting from a certain state in a labeled transition system corresponds to
applying an n-ary operator to an n-tuple of objects of the source concept network or
the environment algebra. The idea of bisimilarity of two states of a transition system
is that for all transitions from one state there is a corresponding one from the other
state such that the results of these transitions are bisimilar states as well. Here the
term ’corresponding’ refers to transitions having equivalent labels.
What could be the respective condition for cognitive models? Given a pair of bisimilar
n-tuples of objects and applying an operator to one of them, applying a corresponding
one to the other n-tuple means here applying an operator that is related to the first
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one (via Ψ). Formalizing these ideas results in the following definition1:

Definition 27. Given a cognitive model C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉, we say that
〈R,Ψ〉 is a bisimulation between 〈A,Ω〉 and 〈B,Σ〉 if and only if ∀ arities n:
∀x1, . . . , xn ∈ A, y1, . . . , yn ∈ B it holds that whenever 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R, the
following conditions are satisfied:

1. ∀ω ∈ Ω(n) it is the case that whenever ω(x1, . . . , xn) ∈ A,
∃σ ∈ Σ(n) such that 〈ω, σ〉 ∈ Ψ(n) and 〈ω(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R.

2. ∀σ ∈ Σ(n) it is the case that whenever σ(y1, . . . , yn) ∈ B,
∃ω ∈ Ω(n) such that 〈ω, σ〉 ∈ Ψ(n) and 〈ω(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R.

5.1.1.1 An Example

This example will illustrate the formal concept of bisimulation in Indurkhya’s frame-
work. We will use a simplified version of an example presented in [25], where In-
durkhya applies his framework to the cognitive processes of an agent called ’Spinner’
that lives in a two-dimensional world Flatland (Figure 5.1), which is similar to the
world in Edwin Abbott’s novel Flatland. Flatland is divided into sections of equal
width and all Flatland is pervaded by uniform diffuse light. The objects of the world
surrounding Spinner are straight lines of a fixed length equal to the width of the
sections. In each section there is one line. These lines can spin around their cen-
ter points. Whenever they are in rest, they are in one of the following positions:
—,/, \ or |. Spinner perceives its environment via a light sensitive sensory organ.
This ’eye’ is of the same width as the sections. Whenever there is a line in front of
Spinner’s eye, it causes a shadow on the eye, and thereby Spinner perceives the line
in its visual field. Because of the difference in size of the shadows, Spinner is able
to distinguish between lines in the positions —, | and the diagonal positions. The
sensory information Spinner gets when lines in the orientations / or \ are in its visual
field is identical because lines in these positions cause shadows of equal width. For
this reason, Spinner is not able to distinguish between lines in the orientations / and
\. Nevertheless, Spinner has conceptualizations of the different orientations / and \.
Spinner’s eye also serves as an effectory organ and thereby allows for interaction with
the environment (i.e. with the lines). Spinner can emit little jet streams of air via
this effectory organ and can thereby cause the lines to spin. The intensity of the jet
streams can be varied in two levels. The jet streams run in parallel to the borders
of the sections of Flatland. They are emitted either left or right from the center of
Spinner’s eye. Although Spinner knows that the jet streams are emitted either left or

1In Indurkhya’s framework there is nothing like a silent transition and therefore we do not need
to distinguish between strong and weak bisimilarity.
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Figure 5.1: Spinner in Flatland

right of the center of its eye, it is not able to perceive or control the side of emittance,
which is totally arbitrary. Spinner is also able to move through Flatland by jumping
from one section to an adjacent one.

When formalizing Spinner’s conceptualization of the environment, one gets four dif-
ferent symbols, representing the possible orientations of the lines. Let h, d1, d2 and v
represent the orientations —, /, \ and | respectively.
As sensory information let — represent the shadow of horizontal line, − that of a
diagonal line and let · denote the sensory input Spinner gets when a vertical line
causes a shadow on its eye.
Let us now formalize the air puffs that cause the spinning of the lines. As mentioned
above, Spinner has a conceptualization of the two different intensities of the air puffs
and of the side where they are emitted. An air puff of the lower intensity level emit-
ted from the right side of the eye is represented by r and one emitted from the left
side of the eye by l. The ones of the higher intensity level are denoted by rr and ll
respectively.
Since Spinner is only able to control and distinguish the intensities of the air puffs,
let the representation of the motor information consist of ⇑ for the lower intensity
level and ⇑ for the higher one.
Combining the representations results in the following source concept network:
A = 〈A,Ω〉,
A = {h, d1, d2, v}, Ω = {r, l, rr, ll}, where all operators are of arity 1.

The environment is represented as B = 〈B,Σ〉,
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5 Analogy as Bisimulation

B = {—,−, ·}, Σ = {⇑,⇑}, with ⇑ and ⇑ being of arity 1.

The connection between Spinner’s conceptualization of the world and its sensorimotor
information can be formalized as a cognitive relation: R = 〈R,Ψ〉,
R = {〈h,—〉, 〈d1,−〉, 〈d2,−〉, 〈v, ·〉}, Ψ = {〈r,⇑ 〉, 〈l,⇑ 〉, 〈rr,⇑〉, 〈ll,⇑〉}.

Spinner’s air puffs have different effects on the lines, depending on their intensity,
their side of emittance and the orientation of the lines. When a line is in the vertical
position |, obviously there is no way for Spinner to make it spin because the air will
either pass the line on the left or on the right. In all other orientations, let an air
puff of low intensity make a line spin around its center point 45◦ in the respective
direction depending on the side of emittance of the air puff. An air blast of high
intensity causes the line to spin 90◦. A representation of source concept network and
environment as directed graphs will illustrate this:

h

d2

d1

v

− ·

r l r

l
r l

ll,rr

ll,
rr

rr
ll,

l,ll,r,rr

⇑

⇑

⇑

⇑,
⇑

⇑

Spinner’s cognitive relation satisfies the conditions for a bisimulation as defined in
Definition 27. All operators in Spinner’s cognitive model are of arity 1, and in such
cases a bisimulation in Indurkhya’s theory is a generalized bisimulation with respect
to the relation between the operators (cf. Definition 15). In this example, R is a
generalized bisimulation with respect to Ψ. Duplicator can win all games GΨ〈a, b〉
with 〈a, b〉 ∈ R. He can match all of Spoiler’s moves and the game continues. Once
it reaches the configuration 〈v, ·〉, there is no way to leave this configuration, and the
game goes on forever.

If Spinner’s cognitive relation is a bisimulation, it must also satisfy the conditions
of the coalgebraic version of bisimulation. R has to be formulated as a transition
structure such that the projections from R ⊆ A× B are homomorphisms.
Source concept network and environment can be represented as transition structures:
αA : A→ F (A), x 7→ {〈ω, x′〉|x

ω
−→ x′},

h 7→ {〈l, d2〉, 〈r, d1〉, 〈ll, v〉, 〈rr, v〉},
d1 7→ {〈l, h〉, 〈r, v〉, 〈ll, d2〉, 〈rr, d2〉},
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5 Analogy as Bisimulation

d2 7→ {〈l, v〉, 〈r, h〉, 〈ll, d1〉, 〈rr, d1〉},
v 7→ {〈l, v〉, 〈r, v〉, 〈ll, v〉, 〈rr, v〉},

αB : B → F (B), y 7→ {〈σ, y′〉|y
σ

−→ y′},
— 7→ {〈⇑,−〉, 〈⇑, ·〉},
− 7→ {〈⇑,—〉, 〈⇑, ·〉, 〈⇑ −〉},
· 7→ {〈⇑, ·〉, 〈⇑, ·〉}.

The cognitive relation can also be formalized as a transition structure:
αR : R → F (R), with R ⊆ A× B,Ψ ⊆ Ω × Σ and 〈x, y〉 7→ {〈〈ω, σ〉〈x′, y′〉〉|x

ω
−→ x′

and y
σ

−→ y′},
〈h,—〉 7→ {〈〈l,⇑ 〉, 〈d2,−〉〉, 〈〈r,⇑ 〉, 〈d1,−〉〉, 〈〈ll,⇑〉, 〈v, ·〉〉, 〈〈rr,⇑〉, 〈v, ·〉〉},
〈d1,−〉 7→ {〈〈l,⇑ 〉, 〈h,—〉〉, 〈〈r,⇑ 〉, 〈v, ·〉〉, 〈〈ll,⇑〉, 〈d2,−〉〉, 〈〈rr,⇑〉, 〈d2,−〉〉},
〈d2,−〉 7→ {〈〈l,⇑ 〉, 〈v, ·〉〉, 〈〈r,⇑ 〉, 〈h,—〉〉, 〈〈ll,⇑〉, 〈d1,−〉〉, 〈〈rr,⇑〉, 〈d1,−〉〉},
〈v, ·〉 7→ {〈〈l,⇑ 〉, 〈v, ·〉〉, 〈〈r,⇑ 〉, 〈v, ·〉〉, 〈〈ll,⇑〉, 〈v, ·〉〉, 〈〈rr,⇑〉, 〈v, ·〉〉}.

It is the case that ∀〈x, y〉 ∈ R : αA(π1〈x, y〉) = F (π1)(αR〈x, y〉) and αB(π2〈x, y〉) =
F (π2)(αR〈x, y〉).
Thus, π1 and π2 are homomorphisms and the following diagram commutes:

F (A) F (R)oo

F (π1)

A

F (A)

αA

��

A Roo
π1

R

F (R)
��

F (R) F (B)
F (π2)

//

R

F (R)

αR

��

R B
π2 // B

F (B)

αB

��

Hence, R is a bisimulation between 〈A, αA〉 and 〈B, αB〉.

The previous example illustrates that our notion of bisimulation in Indurkhya’s frame-
work seems to be appropriate.

5.1.2 Is a Coherent Cognitive Relation a Bisimulation?

Comparing a coherent cognitive relation to the bisimulation given in Definition 27
results in the following fact:

Proposition 1. Given a coherent cognitive model C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉, the
cognitive relation 〈R,Ψ〉 is a bisimulation if for all arities n it holds that Ψ(ω) 6=
∅, ∀ω ∈ Ω(n).

Proof. Let C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 be a coherent cognitive model with Ψ(ω) 6=
∅, ∀ω ∈ Ω(n) and let 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R.
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5 Analogy as Bisimulation

Let ω ∈ Ω(n) with ω(x1, . . . , xn) ∈ A. Then it holds that ∃σ ∈ Σ(n) with 〈ω, σ〉 ∈
Ψ(n), and since 〈R,Ψ〉 is coherent, it is the case that 〈ω(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R
and the first condition for a bisimulation is satisfied.
Now let σ′ ∈ Σ(n) with σ′(y1, . . . , yn) ∈ B. Because of 〈R,Ψ〉 being a cognitive rela-
tion, ∃ω′ ∈ Ω(n) with 〈ω′, σ′〉 ∈ Ψ(n) (cf. Definition 2), and since 〈R,Ψ〉 is coherent,
it holds that 〈ω′(x1, . . . , xn), σ′(y1, . . . , yn)〉 ∈ R and condition 2 for a bisimulation is
satisfied as well. Hence, 〈R,Ψ〉 is a bisimulation.

This shows that a coherent cognitive relation is a bisimulation if on the operator level
it is defined on the whole source.
Remember from Section 3.1 that one of the properties of a cognitive model is that the
relevant subset of the source concept network is a finitely generated concept network.

Corollary 1. Given a coherent cognitive model C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉, let
〈A′,Ω′〉 denote the subset of the source concept network that is relevant, i.e. 〈A′,Ω′〉 =
〈R,Ψ〉−1(〈B,Σ〉). Then C ′ = 〈〈A′,Ω′〉, 〈R,Ψ〉, 〈B,Σ〉〉 is also a coherent cognitive
model and 〈R,Ψ〉 is a bisimulation between 〈A′,Ω′〉 and 〈B,Σ〉.

It is clear that C ′ is a coherent cognitive model if C is coherent because the coherency
condition constrains only the relevant elements of the source concept network. It
follows from Proposition 1 that 〈R,Ψ〉 is a bisimulation between 〈A′,Ω′〉 and 〈B,Σ〉
because obviously for all arities n it holds that Ψ(ω ′) 6= ∅, ∀ω′ ∈ Ω′(n).

To summarize the results of the comparison of a coherent cognitive relation and
bisimulation so far, we can say that a coherent cognitive relation is a bisimulation
between the relevant part of the source concept network and the environment.

5.1.3 Is a Bisimulation Coherent?

The next step is to consider the converse direction, i.e. is a bisimulation between
source concept network and environment coherent? Let C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉
be a cognitive model with 〈R,Ψ〉 being a bisimulation between 〈A,Ω〉 and 〈B,Σ〉.
Let x1, . . . , xn ∈ A, ω ∈ Ω(n) with ω(x1, . . . xn) ∈ A and let y1, . . . , yn ∈ B such that
〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R and let σ ∈ Σ(n) with 〈ω, σ〉 ∈ Ψ(n).
For 〈R,Ψ〉 being coherent it must be the case that 〈ω(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R.
Since 〈R,Ψ〉 is a bisimulation, there is at least one σ′ ∈ Σ(n) with 〈ω, σ′〉 ∈ Ψ(n) and
〈ω(x1, . . . , xn), σ′(y1, . . . , yn)〉 ∈ R.
That is not enough for being coherent because coherency means that for any pair of
related operators and related n-tuples of objects the results of applying the operators
to the respective n-tuples are in R as well.
However, it is possible to specify under what additional conditions a bisimulation is
coherent:
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Proposition 2. Given a cognitive model C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 with 〈R,Ψ〉
being a bisimulation between 〈A,Ω〉 and 〈B,Σ〉. If Ψ or Ψ−1 are partial functions,
〈R,Ψ〉 is coherent.

Proof. Let C = 〈〈A,Ω〉, 〈R,Ψ〉, 〈B,Σ〉〉 be a cognitive model with 〈R,Ψ〉 being a
bisimulation between 〈A,Ω〉 and 〈B,Σ〉.

1. Let Ψ be a partial function.
Since 〈R,Ψ〉 is a bisimulation, it holds that given 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R
and ω ∈ Ω(n) with ω(x1, . . . , xn) ∈ A, ∃σ′ ∈ Σ(n) with 〈ω, σ′〉 ∈ Ψ(n) and
〈ω(x1, . . . , xn), σ′(y1, . . . , yn)〉 ∈ R. Since Ψ is a partial function, for each ω′ ∈
Ω(n) there is at most one σ ∈ Σ(n) with 〈ω′, σ〉 ∈ Ψ(n). Therefore, ∀σ ∈ Σ(n)
with 〈ω, σ〉 ∈ Ψ(n) it is the case that 〈ω(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R, and
〈R,Ψ〉 is locally coherent in A.

2. Let Ψ−1 be a partial function.
Since 〈R,Ψ〉 is a bisimulation, it holds that given 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ R
and σ ∈ Σ(n) with σ(y1, . . . , yn) ∈ B, ∃ω′ ∈ Ω(n) with 〈ω′, σ〉 ∈ Ψ(n) and
〈ω′(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R. Since Ψ−1 is a partial function, for each
σ′ ∈ Σ(n) there is at most one ω ∈ Ω(n) with 〈ω, σ′〉 ∈ Ψ(n). Thus, ∀ω ∈ Ω(n)
with 〈ω, σ〉 ∈ Ψ(n) it is the case that 〈ω(x1, . . . , xn), σ(y1, . . . , yn)〉 ∈ R, and
〈R,Ψ〉 is locally coherent in B.

Recall that 〈R,Ψ〉 is locally coherent in A if and only if it is locally coherent in B
and that 〈R,Ψ〉 is coherent if it is locally coherent in A and in B. Therefore, if Ψ is
a partial function or Ψ−1 is a partial function, 〈R,Ψ〉 is coherent.

How can we interpret the conditions that Ψ or Ψ−1 are partial functions?
Ψ being a partial function means that for any operator in the source concept

network there is at most one corresponding transition in the environment. Two
different transitions in the environment are never interpreted as the same operator in
the concept network. Thus, there is no ambiguous operator in the source.

Conversely, Ψ−1 being a partial function means that for any transition in the en-
vironment there is at most one corresponding operator in the source concept network.
Consequently, there is no pair of synonymous operators in Ω. For Spinner’s cognitive
relation, we considered in the example above, this is clearly not the case because the
transition ⇑ can be interpreted as r and l and ⇑ can represent both rr and ll.

Summarizing the results of this subsection, we can say that the idea that bisimulations
and coherent cognitive relations express similar things, can be justified on a formal
level:
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1. A coherent cognitive relation is a bisimulation between the relevant subset of
the source concept network and the environment.

2. Given a cognitive relation 〈R,Ψ〉 that is a bisimulation, 〈R,Ψ〉 is coherent if Ψ
or Ψ−1 are partial functions.

5.2 Formal Analysis of the Analogical Relation that

is Induced by the Algorithm HDTP-A

As explained in Section 3.2, the algorithm HDTP-A outputs a generalized theory
and modifies the initial source and target theories. For a formal characterization of
the analogical relation, it is important to examine these modified theories, ThAh

S and
ThAh

T , more closely because they build the domain and codomain of the analogical
relation.
HDTP-A selects all elements of the initial source theory that have been anti-unified
with corresponding elements of the target or that have been transferred to the tar-
get. It is this set of terms and formulas that builds the domain of the analogical
relation. It represents the subset of the source that is relevant for an interpretation
of the analogy in the way as it is indicated by the analogical relation. In other words,
the resulting modified source theory ThAh

S is exactly that subset of the initial source
theory that has counterparts in the target theory.
The initial target theory is also modified; after finding corresponding pairs of source
and target axioms and generalizing them, remaining axioms of the source are trans-
ferred to the target as long as this does not result in inconsistencies. It is this stage
of the algorithm that models the process of inductive inference. A transfer results
in an extension of the target theory, and therefore the modified target theory, ThAh

T ,
contains at least as many entities as the initial one. In the following, we will assume
that all elements of the initial target domain have been generalized with an element
of the source2. Consequently, the analogical relation R is surjective, i.e. the analogy
covers the whole target domain. Especially if we consider predictive analogies, this
assumption seems reasonable because an analogy that does not cover the whole source
domain seems quite hard to understand. The degree of structural overlap in analogies
that cover the whole target domain is referred to as target exhaustiveness [12].

2This is the case if in the algorithm HDTP-A, axioms from the target are selected first.
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5.2.1 Description of the Analogical Relation with Indurkhya’s

Terms

In order to compare the analogical relation to a coherent cognitive relation, we will
first consider the properties of the analogical relation described in the terms Indurkhya
uses for characterizing cognitive models.
As explained above, the analogical relation R is defined on the whole modified source
theory, ThAh

S ; this corresponds to a cognitive model with a cognitive relation defined
on the whole source concept network. In Indurkhya’s framework, this property of a
cognitive model is referred to as full.
Furthermore, if axioms from the target are selected first in the algorithm, the ana-
logical relation covers the whole target domain. The corresponding cognitive model
in Indurkhya’s framework is called complete. Without further investigation, it is not
possible to determine whether the analogical relation also has other properties like
the ones described in Definition 5.

When comparing HDTP and Indurkhya’s approach, a central question is whether the
analogical relation and the coherent cognitive relation show similar characteristics.

5.2.2 Does the Analogical Relation Satisfy the Coherency
Condition?

At this point, it is important to note that investigating this question will also reveal
insights into the similarity of the analogical relation and bisimulation because of the
results of Section 5.1. Proposition 1 says that a coherent cognitive relation is a
bisimulation if each operator of the source is related to one of the target. Obviously,
if the cognitive model is full, the coherent cognitive relation is a bisimulation. As
described above, the analogical relation between the modified theories corresponds
to a cognitive relation in a cognitive model that is complete and full. That indicates
that if it can be shown that the analogical relation is coherent, it follows that it is a
bisimulation.

The general idea of the coherency condition for a cognitive relation is that whenever
one takes a pair of n-tuples that is in R and a pair of n-ary operators that is in Ψ,
applying the operators to the respective n-tuples results in a pair of objects that is
in R as well. For analogies, it means that applying analogous operators to analogous
objects has to result in analogous objects.

Here are two of the major differences between the analogical relation and the cogni-
tive relation that make it difficult to formulate a coherency condition in the HDTP
framework:
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1. In Indurkhya’s framework, operators in the source concept network and transi-
tions in the environment that are related via Ψ have to be of the same arity.
In HDTP, this is clearly not the case because terms containing functions or
predicates of different arities can also be anti-unified.

2. Indurkhya’s coherency condition expresses an interrelationship of the operator
level and the object level of the cognitive relation.
In HDTP, the analogical relation is a relation between terms and formulas.
There is no clearly specified restriction of this relation that corresponds to Ψ,
the operator level of the cognitive relation.

Given these facts, it is obvious that a corresponding coherency condition for HDTP
cannot be formulated in a straightforward way because some of the properties upon
which the coherency condition relies are not clearly specified for the analogical relation
in HDTP. Nevertheless, we can specify cases where the problems mentioned above do
not arise.
If we restrict our investigation to cases where the function symbols and predicates in
anti-unified terms are identical, the following result can be shown, which expresses
an idea similar to coherency: Applying identical functions or predicates to analogous
terms or formulas results in a pair of analogous items.
In the following, only a purely syntactic restriction of the analogical relation will be
considered3 because only the syntactic level is relevant if we want to compare the
analogical relation to a coherent cognitive relation and to bisimulation, which also
describe purely syntactic constraints.

Proposition 3. 4

(i) Given s1, . . . , sn ∈ TermS, t1, . . . , tn ∈ TermT with 〈s1, t1〉, . . . , 〈sn, tn〉 ∈ R, it
holds that:

(a) For any n-ary function f defined on TermS and TermT :

〈f(s1, . . . , sn), f(t1, . . . , tn)〉 ∈ R

(b) 〈(si = sj), (ti = tj)〉 ∈ R

(c) For any n-ary predicate P defined on TermS and TermT :
〈P (s1, . . . , sn), P (t1, . . . , tn)〉 ∈ R

3For a restriction of the analogical relation to the syntactic level, the third condition in
Definition11 is not relevant.

4Note that in case two identical variables occur in two terms and the variables should not be
mapped to identical terms, new variables can be introduced such that identical variables are always
mapped to identical terms.
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(ii) Given the formulas φ, φ′ ∈ ThAh

S , ψ, ψ′ ∈ ThAh

T with 〈φ, ψ〉, 〈φ′, ψ′〉 ∈ R, it holds
that:

(a) 〈(φ ∧ φ′), (ψ ∧ ψ′)〉 ∈ R

(b) 〈¬φ,¬ψ〉 ∈ R

(c) 〈(φ→ φ′), (ψ → ψ′)〉 ∈ R

Proof.

(i) (a) Since 〈s1, t1〉, . . . , 〈sn, tn〉 ∈ R, it holds that
ET ` siθ

−1
1 θ2 = ti and ES ` tiθ

−1
2 θ1 = si, ∀i ∈ {1, . . . , n}.

It follows that
ES ` f(s1, . . . , sn) = f(t1θ

−1
2 θ1, . . . , tnθ

−1
2 θ1) = f(t1, . . . , tn)θ−1

2 θ1.
Analogously, ET ` f(t1, . . . , tn) = f(s1θ

−1
1 θ2, . . . , snθ

−1
1 θ2)

= f(s1, . . . , sn)θ
−1
1 θ2.

Hence, 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 ∈ R.

(b) From 〈s1, t1〉, . . . , 〈sn, tn〉 ∈ R it follows that
ThAh

S ∪ ES ` (si = sj) ↔ (tiθ
−1
2 θ1 = tjθ

−1
2 θ1) ↔ (ti = tj)θ

−1
2 θ1 and

ThAh

T ∪ ET ` (ti = tj) ↔ (siθ
−1
1 θ2 = sjθ

−1
1 θ2) ↔ (si = sj)θ

−1
1 θ2.

Thus, 〈(si = sj), (ti = tj)〉 ∈ R.

(c) 〈s1, t1〉, . . . , 〈sn, tn〉 ∈ R implies that
ThAh

S ∪ ES ` P (s1, . . . , sn) ↔
P (t1θ

−1
2 θ1, . . . , tnθ

−1
2 θ1) ↔ P (t1, . . . , tn)θ−1

2 θ1 and
ThAh

T ∪ ET ` P (t1, . . . , tn) ↔ P (s1θ
−1
1 θ2, . . . , snθ

−1
1 θ2) ↔

P (s1, . . . , sn)θ
−1
1 θ2.

Therefore, 〈P (s1, . . . , sn), P (t1, . . . , tn)〉 ∈ R.

(ii) (a) Since 〈φ, ψ〉 ∈ R and 〈φ′, ψ′〉 ∈ R, it holds that

ThAh

S ∪ ES ` (φ ∧ φ′) ↔ (ψθ−1
2 θ1 ∧ ψ

′θ−1
2 θ1) ↔ (ψ ∧ ψ′)θ−1

2 θ1
and ThAh

T ∪ ET ` (ψ ∧ ψ′) ↔ (φθ−1
1 θ2 ∧ φ

′θ−1
1 θ2) ↔ (φ ∧ φ′)θ−1

1 θ2.
Therefore, 〈(φ ∧ φ′), (ψ ∧ ψ′)〉 ∈ R.

(b) From 〈φ, ψ〉 ∈ R it follows that
ThAh

S ∪ ES ` ¬φ↔ ¬(ψθ−1
2 θ1) ↔ (¬ψ)θ−1

2 θ1 and
ThAh

T ∪ ET ` ¬ψ ↔ ¬(φθ−1
1 θ2) ↔ (¬φ)θ−1

1 θ2.
Thus, 〈¬φ,¬ψ〉 ∈ R.

(c) 〈φ, ψ〉 ∈ R and 〈φ′, ψ′〉 ∈ R implies that
ThAh

S ∪ ES ` (φ→ φ′) ↔ (ψθ−1
2 θ1 → ψ′θ−1

2 θ1) ↔ (ψ → ψ′)θ−1
2 θ1

and ThAh

T ∪ ET ` (ψ → ψ′) ↔ (φθ−1
1 θ2 → φ′θ−1

1 θ2) ↔ (φ→ φ′)θ−1
1 θ2.

Hence, 〈(φ→ φ′), (ψ → ψ′)〉 ∈ R.
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Proposition 3 shows that if only terms with identical functions and predicates are anti-
unified, the analogical relation, induced by HDTP-A, is coherent and a bisimulation.
Given a pair of n-tuples that is in R, applying the same function or predicate to them
results in a pair of items that is in R as well. In other words, given an pair of n-tuples
of source and target that is in R, every function, predicate and logical operator that
can be applied to one of them can be applied to the other one as well such that the
results are in R, too.
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6 Conclusions and Future Work

6.1 Conclusions

The objective of this thesis was to compare the analogical relation in HDTP and the
cognitive relation in Indurkhya’s cognitive models to each other with respect to their
similarity to bisimulation.
An overview of some computational approaches to analogies was given, concentrating
on the formal concepts and the central relations that establish and describe struc-
tural similarities of source and target domain. Indurkhya’s cognitive models and
heuristic-driven theory projection, which are both based on algebraic frameworks,
were investigated in more detail. Furthermore, different variations of bisimulations in
several domains were presented and a connection between bisimulations and analogies
was established. For this purpose, a notion of bisimulation in the framework of In-
durkhya’s cognitive models was introduced that is based on the idea of a generalized
bisimulation with respect to a relation.

The coherent cognitive relation in Indurkhya’s cognitive models was compared to this
notion of bisimulation. It was shown that a coherent cognitive relation is a bisimula-
tion between the relevant subset of the source concept network and the environment,
or in the case of analogies, between the relevant subset of the source concept net-
work and the target concept network. Moreover, it was shown that a bisimulation in
Indurkhya’s framework is coherent if the relation between the operators is a partial
function or if its inverse is a partial function.
The analogical relation, which models the connection between source and target do-
main in HDTP, was compared to the cognitive relation in Indurkhya’s framework.
Cases were specified where the analogical relation satisfies Indurkhya’s coherency
condition and is also a bisimulation: If the functions and predicates in anti-unified
terms are identical, the analogical relation in HDTP is coherent and a bisimulation.

Furthermore, for the general case where functions and predicates need not be
identical, the results of the comparison of the coherent cognitive relation and bisimu-
lation imply that if it can be shown that the analogical relation is coherent, it is also
a bisimulation. This is due to the fact that the analogical relation in HDTP is defined
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on the whole modified source theory and covers the whole modified target theory.

If anti-unified functions and predicates are not identical, it cannot be seen easily
whether the analogical relation satisfies the coherency condition and whether it is a
bisimulation because some of the properties, the notions of coherency and bisimulation
are based on, are not clearly specified for the analogical relation in HDTP.
In HDTP, there is no explicitly defined restriction of the analogical relation to function
symbols and predicates that corresponds to the operator level, Ψ, of the cognitive
relation. So, it is not clear how a coherency condition and a bisimulation for HDTP
could be defined.
This suggests that the structural similarity of source and target that is expressed by
the analogical relation in HDTP is probably weaker than bisimilarity. Of course, it
has to be examined further how far it differs from bisimilarity.

As mentioned in Sections 2 and 3.1, some approaches to analogy (e.g. Indurkhya’s
cognitive models and Falkenhainer’s Copycat) are based on the assumption that the
underlying processes of analogical thinking can be seen as high level perception1. In
[25], this is made explicit: Indurkhya uses the same formal concepts for modeling
perceptual processes and analogies (cf. Section 3.1). The cognitive relation in his
cognitive models is used to model both the relation between source and target in
an analogy and the one between source concept network and environment, which
represents the relation between an agent’s conceptualization of reality, and reality
itself. In the philosophy of mind, much work has been done to analyze the relations
between internal representations and the things they represent. Cummins [3] describes
mental representations and their relations to the entities they represent. According to
him, these relations can be modeled as isomorphisms. As investigated in this thesis,
a weaker form of structural equivalence as it is expressed by bisimulations might be
more appropriate. At this point, it remains to analyze more precisely what kind
of structural similarity is expressed by the analogical relation in HDTP. Then one
would be able to determine whether this similarity is close to bisimilarity or if it is
another (probably weaker) form of structural similarity that might be appropriate for
describing the underlying principles of other cognitive mechanisms as well.

6.2 Future Work

Following the ideas developed in Subsection 5.2, future work would consist of a further
investigation of the analogical relation in HDTP and its similarity to a coherent
cognitive relation and to bisimulation. The next step would be to concentrate on
the more general case where different functions and predicates of different arities are

1This view has also been criticized [10].
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generalized. Some of the problems that would have to be solved are mentioned in
Subsection 5.2.2.
For dealing with the fact that in HDTP analogous functions and predicates need not
be of the same arity, a notion could be introduced that describes how an n-tuple can
be related to an m-tuple.

Definition 28. Given the analogical relation R, induced by HDTP-A and the term
algebras TermS and TermT of source and target respectively, let ~s = 〈s1, . . . , sn〉,
with si ∈ TermS, and ~t = 〈t1, . . . , tm〉, with tj ∈ TermT .
We say that 〈~s,~t〉 ∈ R if and only if
∀si ∈ {s1, . . . , sn}∃tj ∈ {t1, . . . , tm} with 〈si, tj〉 ∈ R and ∀tj ∈ {t1, . . . , tm}∃si ∈
{s1, . . . , sn} with 〈si, tj〉 ∈ R.

This could be used for a more general condition for coherency. One of the differences
between the analogical relation and the cognitive relations is that, as opposed to
Indurkhya’s theory, in HDTP there is no formal characterization of analogous pred-
icates or function symbols. The next step would be to define a restriction of the
analogical relation for function symbols and predicates. It is not clear how this can
be done because usually relations between functions are defined as relations between
the results of applying the functions to arguments, e.g. for functions f, g : R → R,
f > g := f(x) > g(x)∀x ∈ R.
In the case of HDTP, analogous functions can have different domains and therefore
a more complex formalization of such a restriction is needed. One possibility would
be to define the restriction of the analogical relation for functions as follows2:

Definition 29. Given the analogical relation R induced by HDTP-A, the restriction
of R to functions R �Func⊆ FuncΣ

Th
Ah
S

× FuncΣ
Th

Ah
T

is a set of pairs of functions

〈f, g〉 with f : (TermS)n → TermS, g : (TermT )m → TermT such that it holds that
〈f, g〉 ∈ R �Func if and only if ∃~s,~t, with ~s = 〈s1, . . . , sn〉, si ∈ TermS and ~t =
〈t1, . . . , tm〉, tj ∈ TermT such that 〈~s,~t〉 ∈ R and 〈f(s1, . . . , sn), g(t1, . . . , tm)〉 ∈ R.

Using this restriction, a generalized notion of coherency can be formulated:

Definition 30. Given term algebras TermS and TermT of source and target respec-
tively, the analogical relation R, induced by HDTP-A, is called coherent only if it
holds that:
If ~s = 〈s1, . . . , sn〉, with si ∈ TermS and ~t = 〈t1, . . . , tm〉, with tj ∈ TermT and
〈~s,~t〉 ∈ R are given, then for any n-ary function f : (TermS)n → TermS and for
any m-ary function g : (TermT )m → TermT with 〈f, g〉 ∈ R �Func, it is the case that
〈f(s1, . . . , sn), g(t1, . . . , tm)〉 ∈ R.

2A restriction of R to predicates could be defined analogously.
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Of course, that is only a suggestion and there might be more appropriate ways to
examine the analogical relation with respect to its similarity to the coherent cognitive
relation and to bisimulation.
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