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1 Introduction

How does a group of individuals that do not ini-
tially share a language agree upon a set of signals
with which to communicate? The mechanisms used
by humans may be regarded of as highly influental
on the form languages have taken on today.

This thesis describes a system simulating a pop-
ulation of agents repeatedly engaging in interac-
tions called “language games”, trying to maximize
their success in communicating about real-word in-
put. This system has been the software operating
an installation by Olafur Eliasson and Luc Steels
called “Look Into the Box!” that was exposed dur-
ing Eliasson’s exhibition “Chaque matin, je me sens
different. Chaque soir, je me sens le même” in the
Musée d’Art Moderne from March to Mai 2002.

The system shows how a shared and potentially
compositional lexicon is reached in a population
as a result of a series of interactions between two
randomly chosen agents, without assuming previ-
ous, “innate” knowledge about the lexicon. This
is also a demonstration of how a globally coherent
behaviour may be achieved without central coordi-
nation or preprogrammed knowledge. That means
that techniques from Artificial Life are used to ap-
proach questions from linguistics. A key issue in
Artificial Life as well as in the concrete example
is “emergence”, the genuine novelty (either tempo-
rally or regarding the level of complexity something
occurs the first time) of properties or behaviour. In
the course of this thesis, this concept of emergence
will be examined for how it can be applied on the
simulation.

First, the history and the theoretical background
that the system is embedded in will be outlined.
It is following the “Language Game Approach”
(LGA) whose goal is to model the origins of var-
ious aspects of language stressing the importance
of functional pressures during actual communica-
tion. This implies that individuals adapt language
norms during communication to increase their per-
formance. This “interactionist” point of view will
be set out against the opposing, “innatist” posi-
tion stressing the importance of genetic rather than
cultural evolution. Also, the difference between
LGA and another interactionist model, the Iterated
Learning Approach (ILA), will be examined.

Then, the exact design and implementation of
the system will be explained.
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In a next section, results of actually running of
the system in different modes will be presented,
showing how different linguistic phenomena can be
created and examined with it.

The following section will introduce the concept
of emergence in detail.

Finally, the observations made using the system
and the definitions found for emergence will be
merged to see whether certain phenomena observed
in the system can be called emergent and in which
way this might be of use.

2 Language Games

2.1 Evolution of language

The goal of the system described in this the-
sis is to demonstrate basic mechanisms that may
be responsible for the creation and propagation
of shared communication norms among numerous
agents without central control. This is relevant for
the investigation of the evolution of language:

• How can individuals come to share a common
language without having a way to communi-
cate in the first place?

• How do individuals that are born into a com-
munity of speakers already speaking a lan-
guage learn this language?

• How can the occurrence of certain properties of
languages be explained (for example, the shift
from holistic to compositional language?), es-
pecially in relation to outside pressures?

• How do changes in language come into exis-
tence, and how are they propagated?

These are some of the questions that appear as
“subtasks” when looking for an answer on how lan-
guage may have come into existence at all and how
it has come to be the way it is today. Building sys-
tems that allow a population of simulated linguistic
agents to master the tasks mentioned above on a
very limited scale may be a good step on the way
to understanding the origins of real language.

The system examines phenomena on a certain
complexity level: the invention and propagation
of a lexicon, and the mechanisms and influences

needed to shift from a holistic to compositional lexi-
con. One might go back to more fundamental ques-
tions like the sources of communication in the first
place, or examine features further increasing com-
plexity of language, like grammar. Neither of this
is done in this thesis.

2.2 Artificial Life

The idea of approaching nature by trying to re-
construct it in computer simulations has recently
become a discipline of its own called Artifical Life
(AL) (this is the so-called “weak” definition of AL;
there is a stronger position that actual life is being
produced in this process – I will not go further into
this point as it is not relevant for the problem at
hand). See [Langton, 1995] for a broad overview
of topics dealt with in this field. An important
point of AL is the assumption that complexity in
nature does not necessarily go back to complex-
ity in individual behaviour; the interactions among
the agents as well as their coping with the environ-
ment may be even more important factors, leading
to what seems like a global behaviour of the whole
system. The process by which such higher level be-
haviour comes into existence without central con-
trol is called self-organisation. Numerous exam-
ples from nature where complex phenomena like
ant paths could be reproduced in a self-organising
way can be found in [Camazine et al., 2001].

An interesting point in this context is that hu-
man reasoning seems to prefer explanations includ-
ing a central control, even in the absence of any
evidence for it. [Resnick, 1995] claims this as a re-
sult of his teaching experience and explains why he
sees that as a pedagogic problem; he also invented
a program called STARLOGO that allows to cre-
ate AL simulations without lots of programming
expertise to bring concepts of self-organisation to
students early.

It is always the question how much of what ap-
pears to be system-level behaviour or properties re-
ally is a system-level behaviour or property. Maybe
the properties could have been deduced from the
individuals’ properties? For example, whether the
behaviour of chemical substances is a system-level
property or whether it can be expected from or ex-
plained by the atoms’ properties heavily depends
on the state of physical knowledge we have about
the atoms. So what seemed to be a system prop-
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erty before may suddenly appear as an individual
property as soon as more is known about the conse-
quences of the individual’s properties. But maybe
there are properties that cannot be reduced for
principle reasons? This concept of novelty that is
tried to be defined here is called “emergence”. That
is a term used in a wide range of meanings, but still,
what seems to be common to all its connotations
is that it is used to describe something coming into
existence, often, but not necessarily with a flavour
of novelty, unexpectedness or irreducibility. So it
is tightly related to the way AL research tends to
look at things (as [Resnick, 1995] cites Christopher
Langton: “The ’key’ concept in AL is emergent be-
haviour”). Towards the end of this thesis, various
definitions of emergence will be tested for their ap-
plicability to the concrete system described here.

Anyway, the way global coherence is supposed
to be reached by local interactions in the system
described here make it an instance of an AL simu-
lation; there are simulated agents dealing with an
environment (that is, talking about it) and per-
forming iterated interactions using only their own
knowledge and their perception; these interactions
are called Language Games.

2.3 The Language Game Approach

Language games are formalized social interactions
suitable to be implemented in a computer pro-
gram to simulate language learning and construc-
tion ([Steels, 1999]).

Each agent tries to optimise his personal commu-
nicative success by adapting his personal language
using information gained through his game.

Note that the term “language” is to be taken
with a grain of salt when refering to the agents’
behaviour; one might argue whether a set of
word/meaning associations actually qualifies for
being called a language. For this reason, “com-
municative behaviour” was preferred over “linguis-
tic behaviour” in the title; in the same manner,
“communicative system” should be prefered over
“language”. “Language” is used liberally, however,
throughout the whole text, for reasons of readabil-
ity and convenience. This does not imply a strong
claim that the system really implements a language
according to any more demanding definition of lan-
guage requiring, for example, grammar; one might
as well read all related occurences of “language” in

quotes.

The History of the Language Games

There are various types of language games: First,
there were games to simulate the creation of lexi-
cal coherence. Then, the coevolution of language
and meanings was examined: Each agent would
first create the concepts, then name them. So the
agents would have to cope with other agents who
do not only use different words, but also perceive
reality differently than themselves ([Steels, 1997]).
Currently, efforts are made to create systems with
agents developing grammar.

Parallely, it has been tried to get systems
to cope with reality; so games have been
played by real robotic agents coping with in-
puts coming from sensors sensing the real world
([Steels and Vogt, 1997]). Like this, the mecha-
nisms used are proven to be resistent to noise; in
addition, there is a structure in real world data (real
shapes, real colours and so on) that may influence
the language creation process. This is important
as a source of complexity and structure in the lan-
guage created, because as mentioned above as one
of the assumptions of AL, complexity in behaviour
may well result from simple algorithms dealing with
a complex environment.

Simulated deaths and births to examine the im-
pact of new language learners on the language sys-
tem, as well as spatial models of the agents’ world
([Steels and McIntyre, 1999]) to simulate several
language communities1 have also been tried out.
Other domains of language development have been
studied as well, for example the origins of vowel
systems ([Oudeyer, 2001]).

The most complex system following the Lan-
guage Game Approach (LGA) so far is the Talk-
ing Heads system ([Steels, 1999], [Kaplan, 2001]),
where agents play a language game coevolving their
concepts and their language, while moving to dif-
ferent geographic sites via internet and using real
hardware.

The system described focusses on lexical prop-
erties, although there also is a currently disabled
function that allows the agents to build their own
conceptualisations.

1[Dixon, 1997] gives an overview about the long-term ef-
fects of geographical/political changes on real languages
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Nature vs. Nurture

It should have become clear that the LGA claims
that language is being transmitted culturally. This
is not so clear in general. There are two opposing
views on how language is transmitted: the innatist
view, claiming that most of human language capa-
bilities are determined genetically, and the interac-
tionist view claiming the opposite, that language is
learnt by social interaction, transmitted culturally,
without innate knowledge. Since the agents start
without any knowledge of language and learn ev-
erything by communication with others, the LGA
takes a clear interactionist point of view.

Since, for the innatist, language is determined
by birth, functional issues occuring during the use
of the language should not have any influence on
the form language takes. Grammar is seen as an
arbitrary construct (“autonomy of syntax”). The
LGA disagrees on this point as well; the agents
have the pressure to optimise their communica-
tive success and adapt their language in order to
do so. In linguistics, new approaches like cog-
nitive or functional grammar have been pursued
([Tomasello, 1998]) to account for the social and
cognitive aspects of grammar as disregarded by the
autonomy-of-syntax paradigm.

It may seem odd to state that these things hap-
pen “without innate knowledge” when looking at
the machinery used “inside” the agents that is de-
scribed below. But what’s being denied is not
the innateness of everything, but the innateness of
specialised language capabilities and that language
structure is genetically determined as supposed by
the assumption of an innate language aquisition de-
vice:

“[Cognitive linguistics] contrasts with for-
malist approaches by viewing language as
an integral facet of cognition (not as a sep-
arate “module” or “mental faculty”)” –
[Langacker, 1998, 1]

Although the functions the agents use are in fact
specialized in the sense that the agents do noth-
ing but language processing, the underlying mech-
anisms are nevertheless very general purpose ones
like associative learning, lateral inhibition, pattern
recognition, so that despite the specialized pro-
gramming of the agents, one could claim that no
mechanisms are used that would not also have to be

implemented in an agent with other or more cog-
nitive abilities.2. Still, it is true that the general
form of the grammar produced does depend on the
programming on the agents (the “innate” function-
ality). One might have to admit that the difference
between interactionist and innatist points of view
is not as binary as it seems at first, but rather a
gradual one; it is on how much of language is pre-
determined, how many functions are hardwired in
the brain in order to get humans to talk. The dif-
ferences, however, are so strong that, as mentioned
above, there are completely different theories on
grammar depending on which point is taken be-
cause different aspects of language are regarded as
important.

Other AL approaches to evolution of lan-
guage

The LGA is not the only attempt to approach evo-
lution of language using artificial life simulations.
For example, the iterated learning approach (ILA,
[Kirby, 2002]) pursued by Simon Kirby, Henry
Brighton and others, tries to explain certain fea-
tures of language (mostly compositionality, e.g.
[Brighton, 2002]) by focussing on the “learning bot-
tleneck” that takes place when a new generation
of individuals has to learn the language of their
“parents” with limited examples. A crucial differ-
ence between LGA and ILA is that in the ILA,
language is again not seen as serving any function
but as something passive which has to be transmit-
ted. So compositionality is supposed to arise out
of transmission problems and not because of com-
municative needs. While this may be true, the de-
cision not to actually use the language seems like
ignoring important parts of the problem (and, in
fact, fails to explain phenomena like emerging co-
herence). See [Steels, 2002] for a detailed compari-
son between ILA and LGA.

The Guessing Game

Now, two different types of language games will be
introduced: The “Guessing Game” as an example

2This would be nicely underlined if it was possible to
show how the learning strategies can be simulated by simple
neural networks. I am pretty sure this would work but it
would probably take some time and is somehow off the point
in this paper
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for a very complex game, and the “Naming Game”,
the one that is played in the system described.

A language game that seems very close to ev-
eryday scenes is the “Guessing Game” as used in
the Talking Heads project. Two agents observe a
scene (each from its own visual perspective), then
one chooses an object and tries to communicate
this object to the second agent, the hearer. The
hearer hears the speaker’s utterance and tries to
find out which object could be intended by the
speaker, given the shared context.

The game is successful if the speaker correctly
guesses the choice of the hearer. To check this with-
out having to use language, the agents can “point”
to their intended choice.

This type of interaction resembles verbal inter-
actions we perform in our everyday life. When we
order vegetables in a shop, we pick an object, ex-
press our wish, taking the part of the speaker. The
communicative success can be seen without further
language needed as we either get what we want, or
something different.

Note that there are three different processes:

conceptualisation abstracting from the picture
the properties of the objects (”red”, ”green”,
”pepper”, ”cucumber”) - this is a very complex
part in itself in the Talking Heads experiment
that is beyond the current context.

discrimination choosing which properties to ex-
press in order to distinguish the chosen ob-
ject from the others - ”red peppers” if there
are non-red peppers (otherwise we could just
say ”the peppers”) as well as non-pepper red
objects (otherwise we might just say ”the red
ones” – which would not appear very natural
for other reasons but do the job of discrimina-
tion).

verbalization choosing words to express the cho-
sen properties.

The hearer has to do about the same, partially
reversed: he too has to conceptualise the objects’
properties. Then he has to interpret the words he
hears back to properties and check for which object
these properties might apply.

Learning takes place as both hearer and speaker
adapt the rules they used in the game positively or
negatively, depending on the success of the game.

The Naming Game

For the system described, a much simpler language
game is played. The payoff for the simplicity is
that the parallels to everyday behaviour are not as
obvious as in the guessing game. Nevertheless, im-
portant processes of language use are covered and,
looking hard, it is in fact possible to find this kind
of interaction in real life.

The meaning (colour values taken from pictures)
is known to both the hearer and the speaker from
the beginning. The speaker then verbalises this
meaning, and the hearer tries to find a set of rules
that allow to map the meaning he recognizes onto
the words he perceives from the speaker.

Communicative success is then the degree to
which the hearer agrees with the meaning-to-word
mapping performed by the speaker. There is no
intended reaction by the speaker, he just repeats
the words, either with an asking intonation (if they
were new, generally or in this context) or an assert-
ing one (if there was a sensible interpretation).

Coming back to the vegetables, an example of
this kind of game being played would include the
vendor and a, perhaps foreign, client who have
agreed on a vegetable type, say, by pointing. They
now have agreed on the meaning, and the vendor,
if interested in his client’s linguistic capabilities,
might pronounce ”cucumber”3. The client would
then either remember an association between his
representation of a cucumber and the word ”cu-
cumber”, or create a new association, if he never
heard of it before (maybe saying, respectively ”(oh
yes, right, that’s a) cucumber!” or ”(so you call
that) cucumber?”).

Learning takes place in the speaker as the rules
that were used to create the chosen utterance are
promoted, while rules that were used to create po-
tential alternative, unused utterances are inhibited
In the hearer, the rules contributing to the cho-
sen interpretation are rewarded as well. But there
are now two different kinds of ”losing” interpreta-
tions: first, those ones that were correct but just
not chosen. These interpretations’ scores are de-
creased just like the concurrent verbalizations in
the speaker (lateral inhibition). Beyond that, there
are those interpretations that actually predicted a
wrong meaning. That means that rules existed that

3This has actually happened to me while writing this
thesis in France.
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mapped the words onto meanings that weren’t ex-
istent in reality. These rules are additionally di-
minished.

Looking at the difference between the guessing
and the naming game, it turns out what is missing
or impoverished in the naming game is basically
those parts that go beyond the actual lexicon gen-
eration and learning algorithm, to the more prag-
matic aspects of language use (namely conceptual-
ization and discrimination). While this takes away
a bit the striking effect of seeing two machines en-
gaging in real communication, what stays is an en-
vironment in which to observe the dynamics of an
emerging lexicon.

3 Implementation

The program parts will be described in order of
increasing complexity: First, I will introduce the
matching and unification toolkit fundamental to
the agent’s linguistic capabilities. Second, I will in-
troduce the agents themselves by describing what
each one does during one round (although one
“round” means one language game, I use the word
“round” to keep the term “game” to describe all the
rounds played with a given population). This is the
main part, but the agents themselves are hosted by
the game environment which provides them with
input, chooses speaker and hearer, keeps track of
global statistics, interfaces the hardware and han-
dles some other administrative issues. This may
be thought of as the environment the agents “live”
in. Whether pictures are grabbed from the camera
or load from disc, whether statistical data is simply
written to disc as a list, transferred to a remote web
server or kept in a file with database commands for
later execution as well as how many agents exist is
decided by this game environment. Finally, there is
a website which displays the pictures and the data
produced by the installation.

The system was, except for the website program-
ming, written in ANSI Common LISP as described
in [Steele, 1990], on a Macintosh platform using
Mac Common LISP. The high level program code
was completely written by me, while I was lucky
enough to be able to acccess several libraries de-
veloped by Angus McIntyre mainly for interfacing
issues like camera, network and graphics access.

3.1 The Matching and Unification
Toolkit

A fundamental part of the agents’ program is a
matching and unification toolkit (MAUT). It de-
fines a format for linguistic structures and rules to
manipulate these structures, and provides functions
to actually perform the manipulations, thus imple-
menting the agents’ basic language representation
and processing capabilities.

The task of keeping structured linguistic infor-
mation and performing matching or merging oper-
ations on those structures is not a new one. The
PATR-II formalism (refer to [Shieber, 1986]), for
a detailed description) describes a commonly used
way to represent those structures and introduces
the unification operator which returns what could
be called the “union” of the information contained
in two argument structures if possible (that is, if
the information is not contradictory).

MAUT is inspired by the idea of PATR-II, bor-
rowing the two key concepts of feature struc-
tures and unification, but realising them differently.
MAUT may seem a bit too complex for what it
is doing inside the current system, and in fact it
is. It was programmed during my internship at
Sony CSL to be used for further experiments on
the origins of language, namely the emergence of
grammar. It is supposed to be used in ongoing de-
velopment on the origins of case grammars whose
rules are expressed in this format. By the time this
thesis is being completed, the formalism has been
and still is developed further and renamed Fluid
Construction Grammar (FCG). So for the storage
of rather simple meaning/word combinations, one
could have thought of more lean engine. We used
it anyway because the code was, although doing
somewhat too much, well working for the task, and
because it keeps the system open for more complex
rules later on (besides that, it was a good oppor-
tunity to use the toolkit in a real program for the
first time).

The MAUT grammar

The elements used in the MAUT are defined as
follows:

<rule> :=
<feature-structure>
<--->
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<feature-structure>

<feature-structure> :=
(<unit-1> ... <unit-n>)

<unit> :=
(<unit-name>

<feature-1> ... <feature-n>)

<unit-name> :=
symbol | variable

<feature> :=
(<attribute> <value>)

<attribute> :=
referent | meaning | ...

<value> :=
symbol | predicate | list |
variable | ...

<predicate> :=
([symbol | variable] [symbol | variable] ...)
ordered

<list> :=
([symbol | predicate | ...]
[symbol | predicate | ...]
...)

unordered

The structures as defined by this grammar are
valid LISP lists and are in fact processed like this
by the program code. For displaying, a more con-
venient representation will be used that resembles
more the way feature structures as typcially used
in linguistics are printed. The transition from LISP
representation to the convenient one is shown by an
example in Figure 1.

Feature structures are structures that can hold
attribute/value pairs. The major difference be-
tween PATR-II and MAUT is that in PATR-II, a
value can either be an atom or a pointer to another
feature structure. So complexity is dealt with via
recursion, with structures being nested arbitrarily
deep and potentially cyclic. With MAUT, there is
no recursion, which makes processing its structures
a lot easier. Since feature structures cannot be re-
cursive, all potential complexity must be handled

Figure 1: sample feature structure in LISP and in
“feature struture-style” representation

((UNIT-1
(FEATURE SYMBOL-1)
(LIST-F

(?VAR-1
SYMBOL-2
(PRED-1 ARG-1 ARG-2))))

(UNIT-2
(FEATURE ?VAR-1)))

m



UNIT-1




FEATURE SYMBOL-1

LIST-F




?VAR-1

SYMBOL-2

(PRED-1 ARG-1

ARG-2)







UNIT-2
[

FEATURE ?VAR-1
]




inside a single structure, which is the reason why
the definition of a MAUT feature structure is a bit
more complicated:

• feature structure do not directly contain at-
tribute/value pairs but are organised into
named substructures called units which then
contain the pairs

• relations between units are not achieved by a
direct link since recursion is not allowed, but
by naming the unit:




TOP-UNIT
[

SUBUNITS
(

UNIT-1
) ]

UNIT-1
[

FEATURE-1 VALUE-1
]




• values may be more complex than just atoms
and be composed of lists (an unordered set of
values) or predicates (an ordered list of atoms)

• for matching lists, there is an additional oper-
ator == (“include”) which can be used in the
pattern to indicate that the following list men-
tions items that must be present in the source
list, but that the source list may well contain
other items beyond those
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In the following, the two basic operations on
structures are described, matching and unification.
The third operation mentioned, rule application, is
a combination of both.

Matching

Match(pattern, source, state) checks whether
source satisfies the constraints posed by pattern
and given the current state (see below). This means
that for each unit in pattern, there must be a
matching unit in source, and for two units to match,
each feature in the pattern unit, a feature of the
same name must be present in the source unit and
the values must be compatible.

Obviously, this is a yes/no question - as long as
there are no variables. Taking into account vari-
ables, the question must be reposed from “Does
source satisfy pattern” to “For which variable bind-
ings does source satisfy pattern?”. So what match
truly returns is not a boolean value, but a set of
states describing valid variable bindings, and an
emtpy set if source does not match at all.

Variable bindings may need to be kept, and so
the result state of a match operation may be passed
on to the next match or unification operation. For
example, unit names in rules are typically left vari-
able. When a unit is found that meets the crite-
ria for the unit in the pattern, the variable is in-
stantiated with that unit’s name. By saving the
variable bindings, further operations can be done
on the same structure while the information which
unit is meant by the variable is preserved. This is
crucial for rule application.

Unification

Unify(pattern, source, state) checks whether pat-
tern and source do not contain contradictory in-
formation and returns the union of the information
contained in both. In comparison to match, where
source had to contain everything pattern did and
all the values had to be compatible, it is now only
compatibility that is checked for and the result is
the source that is augmented by any information it
did not contain but pattern did.

This is basically what the unification operator in
PATR-II does – check for congruence and construct
the union of two structures. It turns out that hav-
ing a feature in unification only reduces the number

of possible structure it can be unifyable with; if two
feature structures A and B are equal except for one
additional feature in A, B will be unifyable with
all the structures A is unifyable with; plus the ones
that don’t unify with A because they have a fea-
ture of the same name with a different value and
are hence incongruent. This means that B is more
general than A, or “B subsumes A”.

So what’s really different about MAUT com-
pared to PATR-II on a functional level (that is,
beyond representation or efficiency issues) is the
way features are seen. In PATR-II they serve as
mere constraints. B can “do” everything A can,
and potentially more. But what if we want to re-
quire the existence of a feature such that a special-
ized A matches while a more general B does not?
It seemed to me that such a kind of criterium, as it
will be required in rule application, is impossible to
pose in PATR-II without “hacking” the formalism.
In MAUT, this is done by the match operator as
described above.

Again, what unify returns is not a boolean value
but a set of states describing valid variable bind-
ings. I will not go into this a lot deeper as it is not
required for the rest of this thesis.

Rule application

Having the two operators match and unify now,
rules can be constructed and applied of the type

“if a structure SourceMatch satisfies constraints as
given by a structure PatternMatch (the if-part
of the rule),

then apply changes as described by a structure
PatternUnify (the then-part of the rule) to
structure SourceUnify”.

SourceMatch and SourceUnify can be the same
structure, but they do not have to be. In the
current program, two different structures are kept,
one with syntactic, one with semantic informa-
tion. This seems more efficient because it keeps
SourceMatch constant even when rules are applied
so rules do not have to be checked several times
with changed SourceMatch structures.

In such a setup, a rule stating that a unit whose
goal is reference should be equipped with a marker
’er’ on the syntax side, would be expressed as Rule1

(see Figure 2).
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Figure 2: Rule1
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Note how the variable ?Unit-1 is used in both
structures, forcing that the change is applied to
the same unit in which ’er’ was found. Consid-
ering the application of Rule1 to a sample se-
mantic structure Sem1 (see Figure 3), match(if-
part(Rule1), Sem1,[empty state]) would succeed,
returning one possible set of variable bindings,
state1, where ?Unit-1 is bound to top-unit. Assum-
ing that the syntactic counterpart for Sem1, Syn1,
is still empty, unify(then-part(Rule1), Syn1,state1)
would return state1 – since no variable bindings
have been changed – and result in a structure Syn2

as shown in Figure 4). Finally (this happens only
when all other operations have been finished in or-
der not to remove any information too early), the
variables are replaced as determined by state1, re-
sulting in a final syntactic structure Syn3 as shown
in Figure 5, the result of the rule application.

Figure 3: Sem1

[
TOP-UNIT

[
GOAL REFERENCE

REFERENT ?REFERENT-1

] ]

Figure 4: Syn2

[
?UNIT-1

[
MARKER

(
ER

) ] ]

An important point is that rules can be used in
both directions. When creating an utterance for a
given meaning, the rules are used in the way de-
scribed above. When parsing a given meaning, if-
and then-part are reversed.

Figure 5: Syn3

[
TOP-UNIT

[
MARKER

(
ER

) ] ]

Simplifications

It turns out that feature structures to represent,
for example, three colour vectors already look quite
complex (see Figure 8 on page 12). A reason to keep
this complexity is the expressive power of the rules
that can be created by manipulating those struc-
tures. For example, one might formulate a rule for
the case that the L components of all three colours
contained have the same value, just by inserting
one variable at each of the L value places.

Having shown this once (which is important to
understand the inner workings of the system as well
as the wide range of potential uses for the future),
a much shorter description will now be introduced
that will be used to talk about rules quickly without
considering the real implementation; as mentioned
above, the rules used in the current application are
much simpler than what can be expressed. In fact,
the only type of rules used maps components of a
single colour onto a word (and vice-versa). This
may be written very compactly as

((L x) (U y) (V z)) <---> WORD

This maps structures with a feature ’L’ of value x,
a ’U’ feature of value y and a ’V’ feature of value
z, with x, y and z being integers, onto the word
WORD4.

Not each component has to be present in a rule:

((U 1)) <---> BA

is a complete rule. See Figure 6 and 7 for the im-
plementation of those two exemplary rules.

Embedding MAUT in the agents

Both semantic and syntactic information is ex-
pressed in feature structures, and the whole lin-
guistic knowledge of an agent lies in its set of rules
(each augmented with a certainty score) about how
to process such structures.

4see the section on conceptualisation (3.2) for the intro-
duction of LUV
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Figure 6: internal representation of rule
((L x) (U y) (V z)) <---> WORD
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Figure 7: internal representation of rule
((L 1)) <---> BA
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The basic processes of the agents’ behaviour can
then already be described at this level:

Verbalisation is the process of applying rules to
a semantic structure in order to create a valid
syntactic structure, while

Interpretation is the same in reverse direction.

Ambiguity in the rules shows up as multiple pos-
sible structures as the outcome of applying all
known rules to the input structure.

Learning means adapting the rule set by creating
new rules, adapting existing rules’ scores, or
pruning old ones.

Where input structures come from, where output
structures go to, how possible rule applications are
found and, most importantly, how the learning of
the rules works in detail, will be managed by the
coming program layers.

3.2 The Speaker

The speaker’s task is to create an utterance describ-
ing a scence in the outside world. This involves
three different tasks:

Perception Get input from the sensors.

Conceptualisation Transform the perceived in-
put into a semantic structure.

Verbalisation Transform the semantic structure
into a syntactic structure.

Note that there is a difference between what is
called here the agent’s task and what is actually in
the agent’s code. Perception and conceptualisation
are important parts of a linguistic agent’s capabili-
ties, should as such be looked upon as parts of the
simulated agents’ behaviour and are therefore men-
tioned here, but in the program, perception and
parts of the conceptualisation code are kept in the
game environment for reasons of efficiency, as for
the time being, these parts are non-adaptive and
hence return the same results for both agents; by
keeping the corresponding code outside the agents,
the resulting information can just be fed on to both
agents at the same time.
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Perception

The input consists of a bitmap with 320x240 pix-
els that is grabbed from the camera or load from
disc. A description of the eye recognition software
will be given in the section dealing with the game
environment (3.4).

Conceptualisation

Colours are initially represented as points in a
three-dimensional space spanned by the red, green
and blue (RGB) axis. These points are pro-
jected into LUV space, an alternative representa-
tion based on a “luminance” (perceived brightness)
value L and two coulour coordinates U and V. This
colour space comes closer to human colour percep-
tion: not only does the difference between a lumi-
nance and two color dimensions better model the
human visual system – a property which is nice but
not of immediate use for our system –, also trans-
formation rules have been adjusted such that the
euclidic distance between two points is proportional
to the average perceived difference between the cor-
responding colors. This is not given in RGB space
where, for example, a change on the green axis re-
sults in a small subjective colour change while the
same change on the red axis is already well perceiv-
able.

These points are normalized and discretized to
be integer numbers from 0 to grainsize which is a
global parameter and usually set to 8 or 16, result-
ing in 512 or 4096 different perceivable colors.

Now, a histogram of the colour distribution is
created by counting which colour appears in how
many pixels in the image. The point of using
LUV space is that now, each of the “bins” (that is,
each of the discrete colour values that are counted)
appears equally different to its neighbours as any
other bin and the agents’ colour discrimination is
likely to appear more realistic. After each pixel has
been counted, the three colours that appear most
frequently are picked. This results in three vectors
out of {0..grainsize}3 which are then transformed
into a semantic structure as shown in Figure 8.

Verbalisation

Verbalisation is the major part for the language dy-
namics on the speaker’s side. During this process,
the agents’ language is created, used and adapted.

Figure 8: sample semantic structure produced by
feature vector
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The goal is to map the semantic structure – con-
taining the colour values – that was created dur-
ing the conceptualisation process onto a syntactic
structure containing the words for these colour val-
ues.

Decomposal As shown in Figure 8, each color
is kept as a subunit in the main structure, but as
mentioned above (Section 3.1), the rules that are
used do not operate on such complex structures
with component colour units but only on structure
containing a single colour unit.

So instead of dealing with one big structure, the
program will map each of the three colour units in
a seperate feature structure. Finally, the three re-
sulting syntactic structures will be put back into
one final syntactic structure that is structured like
the semantic one. Each of the following steps but
the final one (’Getting the words’) describe the pro-
cessing of those single colour vectors.

Using existing rules The semantic structure
containing the single colour vector is matched
against all the if-parts (which are the semantic
parts during speaking) of all the rules in the agent’s
grammar. Each of the possible rule applications
(called parses) gets a score based on

correctness – how well the structure satisfies the
if-part, the ratio between the numbers of fea-
tures in the if-part and the number of features
that are matched by the structure,

coverage – how much of the information present
in the structure is used by the if-part, the ratio
between the number of features in the struc-
ture and the number of matching features in
the if-part,

certainty – the rule’s score

and

generalised – the number of rules that had to be
generalized which will be further explained by
the next step.

For example, matching the structure

S1 : ((L 1)(U 3)(V 2))

with the if-part (now the semantic, left part) of the
rule

Rule2 : ((L 1) (U 2)) <---> BA

results in a correctness of .5 and a coverage of 1
3 .

Rules may be chained: If the coverage score of
one parse is below 1, not all information in the orig-
inal structure was verbalised, a rule handling less
than all three components was used. In this case,
all rules are tested again for this parse (unless it
has a correctness score of 0, which would mean that
the rule just did not match at all), checking if they
can increase coverage of the whole parse, that is, if
they handle components that were not covered by
the first rule. This may happen again and again,
but in practice, since there are only three compo-
nents to be handled, there is a maximum of three
rules to be used serially. When this is done,

correctness of all the single rule applications is
multiplied,

coverage is added such that three rules covering
each one of three components finally lead to
full coverage,

certainty is again multiplied because, e.g., using
three rules of certainty .5 in series should result
in an overall certainty of .125

generalised is just a number and hence added.

Finally, there is a set of possible parses, each
with a score. One is chosen randomly, with the
probabilites weighted by the score. So if there are
two parse, one with a score of .5 and one with a
score of 1, the first one is chosen with a probability
of .5

1+.5 = 1
3 , the second one with a probability of

1
1+.5 = 2

3 .
A crucial parameter for adjusting the agents’

behaviour is the function that computes the final
score given the four arguments listed above. Each
time a search for parses is started, the agent has to
provide such a function (called convert-evaluator-
function). Like this, it would be possible that dif-
ferent agents have different judging mechanisms or
adapt their judgement over time. The function cur-
rently used is the following:

evaluate(cor, cov, cert, gen) =[
0 if cor < 1 or cov < 1

cert ∗ ggen else

]
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So only full parses that do not contain any rule
inflictions are allowed. g is an agent-dependent pa-
rameter between 0 and 1 determining the agent’s
willingness to generalize rules.

New rules: Generalisation So what is gener-
alisation? It is the key to compositionality, one of
the phenomena that are supposed to be examined
by the system. It occurs when the agent recognizes
similarities, but not complete equality between the
current input and a rule. If, e.g., there is a rule

((L 1) (U 1) (V 1)) <---> X

and the current input is

((L 1) (U 1) (V 2)),

((L 1) (U 1)) appears to be a reoccuring combi-
nation of values and a new rule is created to map
((L 1) (U 1)) onto a new word.

So, compositionality in language occurs where
compositionality in the world becomes evident to
the agents. The parameter generaliserate men-
tioned above influences how much a parse’s score is
diminished if such a generalisation has taken place.
Whenever it is below 1, a parse with generalisation
will get a worse score than one without. However,
a holistic rule may not be at hand and even when it
is, the generalisation parse may be chosen in spite
of its lower score due to the way parses are picked.
If such a parse is chosen, the generated rules are
added to the agent’s grammar and ready for later
reuse, the score of the new rule is the product of
the original rule’s score and the ratio of the features
reused in the new rule.

New rules: from scratch When there is no
matching rule, for example in the beginning, when
there is no rule at all, a new word is invented for
the input, so a new rule is created and instantly
used that maps the input vector onto a newly cre-
ated word. The initial score of these rules is again
a fix parameter, currently .1.

The creation of the word consists of assembling
a random number of syllabels, with each syllable
being composed of either a consonant followed by
a vocal, or a consonant, a vocal, and another con-
sonant.

Updating the rules’ scores Finally, there
should be a successful parse and eventually some
non-successful ones (the ones that were not cho-
sen). The score of the rule or the rules that were
used in the successful parse are increased by a given
factor each, and the rules that were used by the
non-successful ones are decreased.

There is an option that would weight the score
changes by the parses score; so rules that seemed
to fit very well but were not chosen are decreased
stronger than ones that did not fit well anyway.
This was supposed to keep ambiguity down by de-
creasing strong concurrent rules while trying not to
damage rules that are not in directly in conflict. It
turned in later experiments, however, that turning
this off leads to faster positive results.

Getting the words When all three colours have
been translated into a syntactic structure, one big
syntactic structure is built out of them. Then the
form elements are retrieved and the elements of
each subunit are put out as a “sentence”. If one
colour has been translated to (ba), one to (buh
xam) and one to (fil), the speaker says

Ba. Buh Xam. Fil.

If speech output is available, the agent will “speak”
those three sentences. This is in practice done by
calling the speech output software that comes with
Mac OS.

3.3 The Hearer

The hearer’s task is to understand the sentence in
such a way that its interpretation becomes congru-
ent with its perceptions. This involves again three
different tasks:

Perception Get input from the sensors.

Conceptualisation Transform the perceived in-
put into a semantic structure.

Interpretation Transform the utterance heard
from the speaker into a semantic structure best
resembling the semantic structure that was
created during conceptualisation.

Perception

Perception for the hearer works the same as for the
speaker.
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Conceptualisation

Conceptualisation also works the same for the
hearer as for the speaker. This does not only mean
that the program is the same; in fact, the data
structure passed on to the hearer’s interpretation
task is the same as the one passed on the the
speaker’s verbalisation. This is a major simplifi-
cation, especially for the conceptualisation part as
one of the paradigms of the LGA is the coevolution
of language and meanings. There is a now unused
option for the agents to create their own colour pro-
totypes. It is unused because it further complicates
communication and it seemed better to first try the
simpler model; the behavioural changes that such
an individual conceptualisation would cause might
be one of the points still to be investigated.

Interpretation

Creation of a syntactic structure As the
hearer hears the three “sentences” uttered by the
speaker, it builds one syntactic structure with three
subunits, each containing all the words of one sen-
tence (potentially just one). The task is then to
use the existing rules in reverse order (compared to
speaking) to map back the syntactic structure onto
a semantic one.

Decomposal In analogy to the speaker, the big
syntactic structure is split into smaller ones, each
dealing with one sentence.

Using existing rules Again, the structure is
matched against all the if-parts of the existing rules
(that are now those parts of the rules that served as
then-parts in the speaker’s verbalisation), with po-
tentially several rules being applied in series. Also
the parses are judged based on

correctness – how many of the word forms in the
rule are found in the source structure; since
currently, there are only rules with one word,
this is either 0 or 1

coverage – how many of the words in the source
structure have been used for a rule application.
This is 1 when all words have been translated

certainty – the product of all the certainties (that
is, scores) of all the rules used

generalised – remains 0 for the whole interpre-
tation process because no new generalisations
are made at this stage. The generalisations
made by the speaker appear to the hearer just
as multiple word sentences. If these are indeed
new to the hearer, it does not find rules so the
reaction to the speaker’s generalisations takes
place not here but in the routine that starts
when no rules are found.

With this “rule score”, the congruence of the result-
ing interpretations with the rule based is judged.
What is still missing is a “reality score” how well
the interpretation matches reality. So the result-
ing semantic structure is matched against the per-
ceived semantic structure: The three features (L,
U and V) of both structures are matched against
each other. These can either be equal or not, so the
reality score is 0, 1, 2 or 3 thirds. The two scores,
grammar and reality score, are multiplied resulting
in the final score that is used for the probability
distribution for the selection of the final parse.

New rules: from scratch Again, it is possible
that there is no satisfying rule application. In this
case, a new rule or several new rules are created:

one word if there is one word, it can just be
mapped onto the whole colour vector that was
perceived:

• (L l) (U u) (V v) <---> BA

two words if there are two words BA and BU
which have to be mapped onto the LUV val-
ues, there are six possibilities to assign words
to meanings, resulting in twelve new rules:

• ((L l) (U u)) <---> BA,
((V v)) <---> BU

• ((L l) (V v)) <---> BA,
((U u)) <---> BU

• . . .

• ((L l) (U u)) <---> BU,
((V v)) <---> BA

• . . .

three words with three words, BA, BU, BO, each
word may mean any component, resulting in
nine new rules:
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• ((L l)) <---> BA,
((U u)) <---> BO, ((V v)) <---> BU

• ((L l)) <---> BO, ...

• . . .

Each of the possible rules is inserted into the
agent’s rule base with a low score; when the words
appear in later runs, the right rules should make
possible a correct interpretation while the wrong
ones create a wrong one, so eventually the right
rules will become stronger and stronger while the
wrong ones die out (there is a mechanism that pre-
vents the hearer from using any of the newly in-
duced rules before it has heard further evidence for
one interpretation or the other).

Still, the hearer may take the role of the speaker
in another run and use one of the wrong rules which
might strengthen them – so also the wrongly in-
duced rules may spread and eventually become a
valid part of the language).

Updating the rules’ scores Once a final parse
is chosen, the rules of the chosen parse are pro-
moted just like in the hearer. Also, the rules from
the parses that were not chosen will have their
scores decreased, again weighted with the score the
parse. But there is an additional updating feature
here: Besides those rules that produced a valid
parse but were just not chosen, there is a possi-
bility for a parse to create an interpretation that
gets a good score for its congruence with the rule
base while producing a wrong interpretation. This
is clearly worse than just providing an alternative
path to the right interpretation, so there is an ex-
tra decrease for parses that have a positive ’rule
score’ but a zero “reality score”. The rules used
in such a parse are decreased again by another pa-
rameter. So rules that strongly claim to be right
while producing wrong interpretations are strongly
decreased.

Communicative success The round is seen as
successful if the hearer could understand the utter-
ance without creating new rules. More precisely,
the overall parse score of each final parse of the
three substructures is taken as the score for the
game. If new rules had to be created in the process-
ing of one substructure, the understanding score for
that particular structure is 0. The overall score of

the round is the sum of these three scores divided
by three.

Uttering words The speaker as well utters
words. It utters the same words as the speaker,
each subunit as one sentence composed of on to
three words, but it may either utter them “under-
standing” (as a statement), when there is a score
greater than zero for that sentence, or “asking”,
when the score is zero. Taking the example from
the speaker, the hearer would reply, assuming it has
understood only the first sentence:

Ba. Buh Xam? Fil?

Sending this to the speech output directly results
in the last two sentencs pronounced with an asking
intonation.

3.4 The Game Environment

The game environment is responsible for doing all
game- or population-level operations as well as for
administrative issues:

• hosting the agent population

• providing input to the agents

• measure global behaviour

• store and retrieve data

These issues will be discussed in detail below.

Hosting the agents

There is not much to be done here. A list of agents
is initialised at the beginning of a game, and then
a speaker and a hearer are randomly chosen each
round. At this place, however, spatial factors or
deaths and births could be introduced.

Providing input

Unless the program is running from disc with ran-
dom images from a directory being loaded continu-
ously, the game environment must guard the cam-
era input and react when it recognizes an eye. Only
then, the image is passed on to the agents and a
round begins. So when running normally, the pro-
gram is in a loop of getting pictures from the cam-
era and classifying them as containing an eye or
not.
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Classifying the pictures Each picture is clas-
sified using a nearest-neighbour algorithm in his-
togram space. When starting, the system is given
positive and negative examples of images. It ex-
tracts the color frequencies in those images and
saves the resulting array (histogram) together with
the classification. When classifying a new image,
the χ2-distance of this image’s histogram to each of
the other histograms is computed and the k near-
est neighbor’s classifications are averaged (weighted
by difference), providing a value that says whether
this image should either be regarded as a positive
or negative example.

Parameters to this procedure are

k how many of the ”nearest neighbours” to ask,

G the number of bins in the histograms (in each
of the three color dimensions)

and

F the function computing a neighbour’s final vote
depending on its own score S and its distance
D.

While F remained F = S/D all the time, some
combinations of k and G were tested regarding
their performance (taking into account speed and
recognition success) on a test set after having been
taught a training set of pictures, and the param-
eters that showed optimal performance were k=3
and G=40.

Measuring the behaviour of the population

In order to get useful information out of the exper-
iments with the system, several variables indicat-
ing the system’s current state are stored after each
run. The game environment takes care of getting
and administrating this data. Which functions are
applied in detail will be introduced in section 4.1.

Storing and retrieving data

The data that is produced by the image grabbing
and the evaluation functions must be stored. There
are several types of game environments to handle
this: a very simple one that just stores the values
as lists in memory, forgets about the pictures and
regularly dumps the lists into a text file. The more
sophisticated one stores all data to a remote web

server, whose inner working will be described in the
next section.

Besides the need to store data, there also is the
less obvious need to get data back to the program:
unique numbers are required to make databases
consistent. Asking the database each time such a
number is required turned out to be too slow, a
more flexible solution was found that would work
for a small number of programs running in paral-
lel: Each game environment is initialised with the
currently highest unique number (which is the only
time the database is asked for a unique number),
and then counts on its own, multiplying by 3 (which
makes three possible sites) and adding n<3, with n
being specific to a certain site. So the program in
the museum with, e.g., n=0 uses the unique num-
bers 0, 3, 6, 9, . . . , while my local version with n=1
takes 1, 4, 7, . . . .

3.5 The Web Interface

The system is designed to make its results publi-
cally available on a web site5 that is automatically
updated as new games are played.6 This is re-
alised on an Apache7 web server running a MySQL
database8 to store the data and PHP4.09 to create
dynamic web pages.

Online storage

One part of the online programming is required to
get the data produced by the program onto the re-
mote server. This is accomplished on the side of
the game environment by calling a website with
parameters containing the data to be stored. For
example, calling the script store-statistics.php4 (see
Figure 9) in the server directory /dir with the pa-
rameters game = 1, run = 100, slot = 4 and value =
1, which means that in run number 100 in game 1,

5www.look-into-the-box.de
6in fact, this whole construction was pretty fragile and

crashed three days after I had left Paris without ever really
recovering. This was already after having recovered from a
hacker’s attack and moving to a more secure server which
would not provide the library functions needed for graphi-
cal visualisation of the statistics. So this whole section has
a somewhat theoretical flavour; nevertheless, the software
does exist in its basic form described here and the website
could be viewed up to a .

7www.apache.org
8www.mysql.com
9www.php.net
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success (slot 4) had a value of 1, would be achieved
by a HTTP GET request equivalent to opening

http://www.servername.com/dir/
store-statistics.php4?
game=1&run=100&slot=4&value=1

with a common browser.
On the server side, the script store-

statistics.php4 translates this request into the
database command

insert into Statistics
(game, run, slot, value)
values (1, 100, 4, 1)

creating a table entry
game run slot value
1 100 4 1

Figure 9: sample script: store-statistics.php4

<?PHP
# code for database access etc
include ("../init.php");

# create a new database connection and
# send query
$db = new DB_Sql(

sprintf("insert into Statistics
(game, run, slot, value)
values (%s, %s, %s, \"%s\")",
$HTTP_GET_VARS["game"],
$HTTP_GET_VARS["run"],
$HTTP_GET_VARS["slot"],
$HTTP_GET_VARS["value"]));

# affected rows is 1 if 1 record
# was correctly inserted
# client can search the output for
# "SUCCESS" or "FAILURE"
if ($db->affected_rows()==1)
{ print "store-statistics: SUCCESS"; }
else
{ print "store-statistics: FAILURE"; }
?><

There are several scripts to store various data on
a server. Although some additional code is needed
for the upload of whole images, the basic way those
scripts work is always the same.

Online retrieval

Once the data is uploaded to the server, the server
can create a webpage displaying the games played,
see figure 10.

Figure 10: www.look-into-the-box.net

4 Running the System

In this section, the system will be run with various
inputs and parameters and the behaviour will be
tested. Several kinds of situations and phenomena
will be examined:

• The emergence of a coherent lexicon without
compositionality will be examined.

• Once lexical coherence has been achieved, the
experiment will be re-run with compositional-
ity enabled.

• For both cases, the influence of the environ-
ment on the agents’ behaviour will be tested:
Two simulations will be run with similar pa-
rameters; in the first run, random data will be
given to the agents. In the second run, the
data produced by the eyes will be used, result-
ing in a non-uniform probability distribution of
the input vectors. It will be examined whether
the created languages differ, whether structure
existing in the environment can be found in the
language as well.
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How can we judge what is happening with the pop-
ulation? In fact, there are various ways to extract
data describing the current state of a game. Before
describing the simulations, these ways to measure
the behaviour of the system will be introduced.

4.1 Measuring the System’s Be-
haviour

There are two ways of measuring what is going on
inside the system. First, the system’s behaviour
can be regarded. This is what could be seen by any
curious spectator looking at each language game’s
result: The words used and the success and under-
standing values. Opposed to these performance-
based values, there is the possibility of looking into
the agents’ brains from a godlike perspective, judg-
ing their competence. The game environment keeps
track of both kinds of values, it both observes the
values returning from the individual games and
computes functions of the whole system by taking
into account, for example, all the agents’ lexica.
In fact, most of these functions are computed by
doing operations on the lexicon, there are only a
few yet-to-be-implemented ones that would addi-
tionally keep track of other things like past lexica
or seen items.

It turned out when looking at the results of
games that the population functions do give a good
idea of the overall direction the population is head-
ing to. For example, it can be monitored how lex-
ical coherence and average understanding increase
parallely, and how, during this process, the average
sum of rule scores given by an agent becomes sta-
ble while the number of rules typically decreases.
When less rules together get the same amount of
score points as mroe rules did before, this indicates
some rules getting very strong while other, weaker
ones are pruned. This is what we expect given the
fact that lexical coherence increases.

Still, these are descriptions that work on a rather
high level of abstraction. What is really happening
with the lexica remains pretty unclear. Looking
at the rules directly may on the other hand be a
pretty tedious enterprise. This is why a more com-
fortable form of lexicon inspection is introduced in
the second part of this section.

Population Functions

Some of these functions can be computed for one
agent, others between two agents. However, what
is supposed to be measured is the behaviour of the
whole population. To get population coherence,
for example, which is defined for two agents, each
agent would have to be compared to each other
agent each round which takes a lot of time to com-
pute (growing quadratically with the number of
agents). Often, values like these are approximated
for the whole population by just taking the values of
speaker and hearer. As each combination of agents
should occur equally often, this should in the long
run amount to the same.

Understanding How well was the speaker’s ut-
terance understood by the hearer?

understanding : game → [0..1]

As mentioned in section 3.3, this is the average of
the three parses’ scores that were created by the
hearer.

Success Was there any understanding at all?

success : game → {0,
1
3
,
2
3
, 1}

Similar to understanding, but making a binary dis-
tinction between understood and not understood;
each of the three subparts counts either as 0 (if
ununderstood) or as 1 if it has a positive score.

Average number of rules How big is the indi-
viduals’ lexicon, in average?

avnum : population → R+
0

Average sum of rule scores What’s the sum of
an individual’s rules’ scores, in average?

sum : population → R+
0

Coherence How much do the lexica of the differ-
ent agents equal each other?

coherence : agent× agent → [0..1]

Coherence is measured by computing the coherence
between each rule of the first agent with each rule of
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the second one. Computing coherence is somewhat
hard to define because two rules may be not only
congruent or contradictory, they might also just be
unrelated to each other. So the coherence function
for two rules returns two values: Both the if-parts
and the then-parts of the rules are compared. Each
pair may be congruent or not. What is returned by
the function is both the greater congruence value
(which indicated how much the rules should have
in common as one of their parts matches) and the
smaller congruence value (how much do they in fact
agree?). So if neither if- nor then-parts match, the
function returns 0/0. But if one part matches com-
pletely and the other one does not, it would return
1/0. And finally, if two rules do absolutely agree,
the result would be 1/1. In the agent-rating func-
tion, these values are added, weighted by the prod-
uct of the two sum’s certainty scores, and the ratio
between real and potential coherence is the result.

Compositionality How strongly are composi-
tional rules preferred over holistic ones?

compositionality : agent → [0..1]

Each rule gets a compositionality score; 0 if it is
holistic (that is, requires three vector components
to match), .5 if it takes two components and 1 if
the semantic parts consists of only one component.
The compositionality measure of the agent is the
average compositionality of its scores (weighted by
the rules’ score).

Outlook: More Population Functions

There are more things that could be measured but
aren’t yet. These functions are just proposed to
show how more abstract properties of the created
language could also be tracked, like the ability to
deal with unseen input (“induction”) or a general
measure of usefulness. This might be especially
interesting when going further into the composi-
tionality matter and comparing compositional lan-
guages to holistic ones; the latter might look better
on the more basic aspects just because they’re sim-
pler to learn. The functions listed below are likely
to account for a compositional language’s advanced
capabilities.

Expressivity How many meanings can be ex-
pressed by a language?

expressivity : agent → [0..1]

expressivity(agent) =
|Me(agent)|

|M|
Me(agent) the set of meanings the agent can express

M the set of all possible meanings:

M = {0..grainsize}×{0..grainsize}×{0..grainsize}
Two related properties can be thought of that

might turn out to be interesting in judging how a
language deals with pressures that occur in real life,
like limited memory and poverty of stimulus:

Recall How many of the meanings seen can still
be expressed?

recall : agent → [0..1]

recall(agent) =
|Mexpressable(agent)|
|Mseen(agent)|

(Mseen(agent) 6= ∅)
Be it due to a limited memory or due to mislead-

ing communication acts, it is possible for an agent
to forget signals for meanings that he already knew.
The number of meanings an agent has been able to
express at least once during the game is equal to the
number of meanings it has seen (since after a game
is played, the agent will have a way of expressing
the vectors that were seen).

Induction How many of the unseen features can
be expressed?

induction : agent → [0..1]

induction(agent) =
|Mexpressable,unseen(agent)|

|Munseen(agent)|
(Munseen(agent) 6= ∅)

As long as there are more meanings than those
that were mentioned in a speech act (as it is ex-
tremely the case in natural language and (although
with a comparably tiny meaning space) recon-
structed in the experiment), a language may have
the capability to talk about unseen meanings. This
is a measure to express this capability. Here, the
advantage of compositional languages comes out
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clearly: There cannot be unused meanings being
able to be expressed in a holistic language, as there
is no structure that the agents could use to derive
an uttering for a new meaning from similar, known
meanings.

Language Score ”How good is the language do-
ing?”

score : run → [0..1]

score(run) = expressivity(run) ∗ coherence(run)

In search for a unique indicator for the develop-
ment of a language towards a useful communica-
tion tool, the first idea was to look at coherence
alone. The closer the individual agents’ dictionar-
ies would resemble each other, the more successful
the process of building a language would seem. See-
ing that, for complex cases, coherence often drops
from the beginning and never again reaches initial
values, it became clear that trivial languages con-
cerned with only very few meanings would get very
high scores, while a language that expands to ex-
press new meanings while self-organising would not
make any visible progresses regarding coherence.

So, it is hoped (although not sure because expres-
sivity is not yet implemented) that this function
would return a value that gives a sensible informa-
tion whether success is to be expected to increase
or decrease.

Lexicon Overview

As mentioned above, an inspection utility was
needed to give more in-depth information than the
numeric measures, while still abstracting enough to
make it more comfortable than browsing the origi-
nal rules. This is what the lexicon overview is in-
tended to do.

Each rule describes the agent’s believe in the
mapping of an LUV vector and a word. The idea
is now to put all LUV/word mappings on one axis,
and all the agents on the other axis. Then, each
rule can be displayed by entering its score into the
field crossing the mapping and the agent.

The mappings are grouped by meanings. So
what appears as a group in the table are all the
concurring word forms for one meaning. So situa-
tions like “all agents are pretty sure that (1 1 1)
should be called ba, but there are two agents that

also tend to call it bu” can be directly perceived
(see figure 11).

Figure 11: sample lexicon overview

luv h Form % s Agents
0 1 2

111 0.811 BA 0.75 3.0 1.0 1.0 1.0
BU 0.25 1.0 0.4 0.6

avg.h 0.811

There are also some calculations done to further
increase the overview’s expressiveness:

s - the score The sum of the scores of all the rules
that express this mapping, or “how strong this
mapping is in the population”. The different
word forms are sorted by this value.

% - the relative score This is the score of the
particular mapping divided by the sum of all
the concurring mappings’ scores.

h - lexicon entropy This is a value that is com-
puted for each meaning as a function of all the
concurring word forms for that meaning. It is
defined as

H(X) =
∑

x∈X

P (x)log
1

P (x)

and describes the amount of information (in
bits) contained in the choice of one element
x out of a set of choices (a random variable)
X with different probabilities P (xi) associated
to each element xi. For example, the infor-
mation which of two equally probable choices
was made is “worth” exactly one bit. If one
choice was known to be more probable before,
the information content is a bit less because
some of the information is already contained in
the probability: as the probability of the two
choices approach 1 and 0, the information ap-
proaches 0. Similarly, the information content
of choices containing more than two elements
can be computed.

When this measure was originally invented by
Shannon ([Shannon, 1948]), the goal was to ex-
press the informational properties of a signal
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as opposed to its properties as a mere piece of
data. The value of information may be seen as
the degree of uncertainty in absence of it, and
this degree of uncertainty is what is of interest
here: uncertainty which word to use for a given
meaning means ambiguity in the rules, and so
this measure gives a numeric information of
how much beliefs about the correct word for a
given meaning still vary. If there is only one
word left, entropy is zero.

avg h - average entropy This is the average of
the entropy values of all meanings. This
is again a population-level variable that can
be tracked by the game environment and be
graphed along with the other variables defined
in the previous section. As the population de-
velops towards a shared lexicon with one word
for each meaning, it approaches zero.

This should correlate heavily with the inverse
of the coherence function. Still, the coherence
function regards ambiguity in both directions
(also in mapping back from words to mean-
ings) which avg h does not. For this, another
table would be required showing the concur-
ring meanings for a single form (this is an issue
only when using compositionality).

4.2 Lexical Coherence

The first game played is about lexical coherence
only. It is played with random binary three-
dimensional input vectors, (0 0 0), (0 0 1), . . . ,
(1 1 1). The global outcome can be examined in
figure 12

So what can be read from these graphs?

• The performance-based values success and un-
derstanding tell us that the population reaches
100% success, which would indicate the exis-
tence of a lexicon shared by all the individuals
in the population.

• Looking at the lower graph, we can see (now
looking at competence-based data gathered
from a “divine” perspective) that each agents
ends up having in average 8 rules, with an over-
all score of 8. This amounts to 8 rules with
100% certainty. What could not be charted

Figure 12: Game ’lexical coherence’: Population
functions
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because it cluttered the graph is that the ra-
tio between the two in fact develops almost
exactly like the understanding curve.

• The two measures that analyze the lexicon
more deeply indicate the same: 0 entropy and
a coherence value of 1 only leave one interpre-
tation: All the agents have the same rules.

Whether this conclusion is correct can now easily
be checked by looking at the final lexicon overview
– see Figure 24 on page 50. Is there more to read
from the graphs? So far, only the final outcome
has been analyzed. There are also several things to
be found out about the process of getting to this
point:

• After about fifty runs, there is a peak in en-
tropy and in the average number of rules and a
minimum in coherence. This indicates a max-
imum of variety in the rules, a minimum of
structure to be found in the lexica. Interest-
ingly, success already reaches over .8 at about
the same time. So entropy is not so bad? In
fact, high entropy implies that agents under-
stand a lot of words for one meaning. This
is what brings up success here: While there
is widespread dissent which word is the best
one to use in a given context, the agents do
somehow understand even words not favoured
by them. Of course, those rules’ scores are
not very high and this is why understanding
(which takes into account the score each parse
has achieved, in contrast to the binary success
measure) stays down longer until coherence in-
creases.

• At about run 800, most of the actions seems to
be over. As success and understanding slowly
approach 1, there seems to be some ambiguity
left, because entropy stays at about .15 for a
very long time (about 1000 runs).

• At about run 1800, whatever the problem was
is suddenly resolved and total coherence is
reached.

In the following, the assumptions made by look-
ing at the graphs will be justified by looking at the
lexicon overview for given points in time. Before
the spots mentioned above are examined, the first
few runs will be presented in order to demonstrate

the basic principles of the game at work. See Ap-
pendix A for the tables.

Run Nr. 1: The first rules Both agents see (0
1 0), (0 0 1), and (0 1 0) again. Agent 1 takes the
role of the speaker, creating the rule (L 0) (U 1)
(V 0) <---> GILCY with an initial score of .3 (all
the absolute numbers mentioned here are parame-
ters to the game). The hearer, agent 0, induces the
same rule and initializes it with .1 (induced rules
can have another score than self-invented ones).
The same happens for the rule (L 0) (U 0) (V 1)
<---> DA. Then, the rule invented in the first place
is used again by agent 1 as (0 1 0) has to be ver-
balised again. The rule get a .2 increase for being
reused. The hearer can also reuse the rule success-
fully and also promotes it by .2.

Run Nr. 2: More rules In this run, more rules
are invented by agent 3 talking to agent 5 trying to
communicate the vectors (0 0 0), (1 0 0) and (1 1
0): POWI. FIP. POGIDLUS. See Figure 17 for the
state of the lexica after this run.

Run Nr. 3: Ambiguity in the world In the
third run, agent 5 tries to talk to agent 2 about the
vectors (0 0 1), (0 1 1) and (1 0 0). It can correctly
reuse the rule (L 1) (U 0) (V 0) <---> FIP and
it invents a rule (L 0) (U 1) (V 1) <---> VOV
without anything exciting happening. The inter-
esting thing happens when (0 0 1) is about to be
verbalised: there is a word for this (“DA”), but the
rule for this is only known to agents 0 and 1. So,
a new rule is invented by agent 5 because it does
not know that there exists a word for this in the
population (see Figure 18).

Run 4: Ambiguity within an agent While
the ambiguity created in the last run is only visible
when comparing different agents, now a new type
of ambiguity will come into play: concurring rules
inside one agent. Agents 3 and 5 had negotiated
the rule (L 1) (U 1) (V 0) <---> POGIDLUS in
run 2, but when agent 4 tries to communicate (1 1
0) to agent 5, he cannot know this so he makes up
another rule mapping that vector on “DU”. This
leaves agent 5 who correctly induces the new rule
with two possible words for the meaning (1 1 0),
“DU” and “POGIDLUS” (see Figure 19).
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Run 5: Damping ambiguity This description
of the first few steps will close with a demonstration
of how ambiguities can be damped again. Agent
5 has to communicate (1 1 0) to agent 1. “DU”
and “POGDILUS” are both equally probable, but
“DU” wins randomly. This gives a .2 reward to
“DU” and a .04 decrease for “POGDILUS” (the
total score of the parse, .1, multiplied by the pa-
rameter for lateral inhibition, .4 – which may in
fact be too little and cause the long time it takes
to fully eliminate all ambiguities). Figure 20 shows
the updated scores in agent 5.

Run 51: Maximum entropy When examin-
ing the population functions, there was a peak in
entropy and rule number at about run 50. See fig-
ure 21 to get an idea of the chaos in the lexicon
at that point in time. Note how up to 4 words
for one meaning have been created at that point in
time. At the same time, however, also note that
most agents understand at least two words for a
given meaning. So the lexicon has evolved to a not
very elegant, but roughly useful form allowing ba-
sic communication, and from now on it will evolve
towards efficiency (that is, removal of ambiguity).

Run 400: First favourites At run 400, the
language has already had some time to be nego-
tiated by the agents. There is a first commonly
accepted rule: (L 0) (U 1) (V 0) <---> GILCY
is the only rule for (0 1 0) and shared by all agents
with a 1.0 score. As for the other meanings, mostly
two concurring rules are left, sometimes with a win-
ner already to be expected, others, like “KETADI”
and “LUCGAGER” at about equal scores.

Run 800: A mostly stable lexicon After 400
other runs, as we had expected from the graphs,
most rules are already fixed. There is a soon-to-be-
resolved ambiguity for meaning (1 0 0), and besides
that, only the two concurring mappings that could
already be seen in run 400 remain unstable. One
can see that concerning those two mappings, not
much has changed in the last 400 runs. As we al-
ready know from the graphs, not much will happen
for the next 1000 runs, and now that this will be
due to those two mappings going back and forth in
the agents. With two mapping being about equally
well scored and distributed, there is not much rea-

son to choose the one over the other, so the only
way to resolve this problem is to wait for one part
to get stronger by a random series of promotions;
once one mapping is considerably stronger, it will
be chosen considerably more often, thus amplifying
the effect.

Run 1952: The final lexicon At run 1952, the
simulation was stopped, shortly after a completely
coherent lexicon was reached. The struggling be-
tween “KETADI” and “LUCGAGER” was finally
decided in favour of “KETADI” .

Conclusions The assumptions based on inter-
pretations of the graph could be justified. Two
distinct phases could be identified: a quick spread
of new “ideas” after the start, and then a longer
period of “cooling down”. Already, it might be
interesting to do further experiments: Where do
those phases come from? The parameters influenc-
ing lateral inhibition might to be too weak. An-
other run with some parameters changed might re-
veal whether the split into two distinct phases was
due to implementation details or if the reasons for
this kind of behaviour lie inside the system dynam-
ics.

In fact, looking at the graphs and the lexicon
overviews again a few days after I first looked at
the experiment’s results, it occured to me there are
good reasons to suppose that the two phases come
out of the system dynamics: Once an agent has seen
each meaning once, he has at least one word for it.
When each agent has seen all meanings, no more
words will be invented because the only occasion
to invent new words (in absence of compositional
functionality) is when a new meaning is encoun-
tered. So after this point, no new meaning/word-
mappings are invented and only the existing ones
coexist, with some eventually dying out.

This kind of behaviour is actually predictable
from the individuals’ program, but still it did not
become clear to me in advance and even when
looking at the game, I did not immediately rec-
ognize the mechanism at work. So although the
system’s behaviour is neither irreducible nor prin-
cipally unpredictable, running the system has un-
covered some knowledge about its components’ be-
haviour that would have probably remained com-
pletely unknown to me otherwise. Is this a case of
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emergence? In section 6, questions like these will
be treated.

4.3 Environmental Influence

The above experiment has been made with ideal-
ized data in such a way that there were only few
possible input vectors which would appear with
equal frequency. This was a comfortable way to
demonstrate the basic mechanism at work without
having the sheer size of the lexicon obstruct the
understanding of what is happening.

Also, prototypical behaviour could be observed
well because the environmental influence was ba-
sically turned off. The “creative explosion” and
“cooling down” phases behaviour, for example,
could be observed so well because all input vec-
tors would in average appear equally often. This
is because each input vector has its own creative
explosion phase (until shortly after each agent has
seen it at least once), and a cooling down phase
(the rest of the time). These phases, however, only
show up on the graphs when they taking place syn-
chronously for all input vectors (which is the case
when they appear equally often).

So the “sandbox” environment is good for docu-
mentation purposes, but to see whether the model
makes sense in a larger context, it must be checked
how it performs with real-world input.

The ’Real World’

The ’real world’ for the system consists of input
taken from the pictures of eyes taken by the camera
during the course of the exhibition (I used 3000 out
of about 13000 taken pictures). As decribed above,
each picture is processed into three vectors, each
of these vectors consisting of three components (L,
U and V) ranging from 0 to grainsize− 1, that is
7 for the simulations described here. This means
that there are 512 potential input vectors; in fact,
however, only 31 of them actually occur. Refer to
table 1 for a list of the vectors that do appear and
their relative probabilities.

Visualization Issues I have tried to create a di-
agram of this distribution. This is not quite simple
because the data is in fact 4-dimensional as there
are three components describing each data point’s
position and another one being the actual variable

to be plotted. There is no fully satisfying solution
to this problem that I know of (especially when the
graphs are to be printed – otherwise, one of the di-
mensions can be put on the time scale). For a mere
impression of the way the colours are distributed,
however, I have tried to graph the data by plot-
ting each input vecor as a sphere situated in three-
dimensional space; the diameter of the spheres is
then proportional to the square root of the relative
frequency of the vector. I took the square root as a
compromise because it is not sure whether the sub-
jectively perceived “size” of a sphere depends on
its volume, surface or diameter. Also, very small
but non-zero values were increased to a minimum.
Refer to the first figure on page 31 for such a visual-
ization of the input space, made with the raytracing
program Povray10.

Figure 13: Game ’environmental influence’: Popu-
lation functions

10www.povray.org
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Table 1: Distribution of Elements in Input Space
(the “real world”, as seen by my system)

l u v relative frequency
5 3 5 0.27965805
5 4 5 0.15999997
5 3 4 0.109059796
6 3 4 0.099487156
4 3 4 0.05675212
5 3 6 0.052991435
6 3 6 0.049230754
6 4 5 0.036923066
6 3 5 0.032478623
4 3 5 0.027692301
7 3 4 0.026666658
4 2 5 0.0259829
3 2 5 0.010940168
6 4 6 0.008205126
7 2 4 0.0075213653
6 2 4 0.0034188023
5 2 4 0.0020512815
3 3 4 0.0020512815
5 4 6 0.0017094011
3 3 5 0.0017094011
4 3 6 0.001367521
7 4 5 0.0006837605
5 2 5 0.0006837605
7 3 6 0.0003418802
7 3 5 0.0003418802
6 4 4 0.0003418802
6 2 6 0.0003418802
6 2 5 0.0003418802
5 4 4 0.0003418802
4 4 5 0.0003418802
4 2 4 0.0003418802

Results

Figure 13 shows the graphs for a game having run
18000 rounds, taking inputs from the space de-
scribed above. One can see that success and un-
derstanding tend to 1 very early. The other mea-
sures do show the signs for a converging lexicon
(rule scores approaching the number of rules, con-
vergence approaching 1, entropy approaching 0),
but even after these 18000 games played, they are
still away from perfect convergence.

I will argue that the behaviour is consistent
with the one found with artificial inputs anyway.
It can also be found in the previous game that
the performance-based measures success and un-
derstanding virtually approach 1 long before the
competence-based ones. This is because a perfectly
coherent lexicon is not needed for successful com-
munication.

The first experiment has shown that it may take
1800 games played before each vector has been as-
signed its final word. This was for a vector ap-
pearing with a probability of 1

8 . Taking into ac-
count there are three vectors involved in each game,
there was a 3

8 probability for each vector to ap-
pear in a game. So in the 1800 games played, each
vector should have appeared in average 675 times.
Looking at the distribution in table 1, it turns out
that there are vectors that have a probability of
appearing as low as .0003 (meaning that they ap-
peared only three times in the sample containing
9000 input vectors from 3000 pictures). This trans-
lates into 5.4 appearances in average during 18000
runs. I would judge, therefore, that the missing
convergence in this game is due to some vectors
not appearing often enough. If one let the game
run around 100 times longer, one could expect it to
behave in the same way like the first one.

Again, looking at the lexicon overview (figure 25
on page 51) can give further evidence. As there
are 31 possible inputs, I made the overview a bit
smaller, deleting all rules that had a score of 1.0.
Like this, the rules displayed are those responsible
for the lacking congruence. It turns out that these
are the rules concerned with the following input
vectors: 335, 424, 445, 525, 544, 625, 626, 644,
735, 736. These are in fact 10 out of the 12 least
frequent vectors. The two vectors from the twelve
least frequent ones that are not among these, 745
and 436, are indeed described by 1.0-scored rules,
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however, these rules are shared by three agents only
(this is only visible in the full lexicon overview not
printed here).

Refer to page 31, the picture in the middle, to
see the distribution of rules in input space. The
spheres’ size corresponds to the sum of the rules
describing this particular vector. One can see how
nearly all the vectors that appear at all in the input
space have become equally big spheres. There are
also a few left that are smaller, these correspond to
very small spheres in the input space as well: Those
are the ones that keep coherence from reaching 1.

Concluding, the remaining incongruence can re-
ally be traced back to some input vectors appearing
just too rare.

4.4 Compositionality

A whole new set of experiments can be made when
the behaviour of the agents is changed as to al-
low compositional rules. What this means in detail
has been explained in the Implementation section.
In short, compositional rules are just rules that do
not cover all three components of the input vec-
tors, but only one or two. Then, those rules can
be chained (like one expressing a certain L value
and another one that expresses a combination of
a U and a V value). The interesting point about
this is the way these compositional rules come into
existence. They are not created randomly but by
generalization (see page 14). It means that agents
are able to detect similarities between the vectors
they are currently processing and those that are
expressed by their existing rule base. So it is only
when an agent has, for example, a rule for express-
ing ((L 1) (U 1) (V 1)) and it sees a vector ((L 1)
(U 1) (V 3)) that there is a chance compositional-
ity comes into play: It then won’t create a new rule
for the first vector, but generalize the second one
so that a new word is created for ((L 1) (U 1)) and
then another one for ((V 3)).

Compositionality in Real Language

Compositionality contributes heavily to the com-
plexity found in real language, from the way the
alphabet is used to form words11 over morphology

11At least in western societies; Asian iconic alphabets give
interesting evidence that compositionality is not required to
develop on this level, while it may occur on different ones,

to syntax (not even mentioning the semantic as-
pects).

Of course, what is called compositionality in the
context of the system is a miniature version of real
languages’ compositionality. But the basic feature,
the use of reusable components that combine to
new wholes remains the same.

The following simulations might propose mech-
anisms how compositionality might come into ex-
istence and spread. There are other simulations
(e.g., [Brighton, 2002]) that focus on composition-
ality. As shortly mentioned already in the begin-
ning, they focus on the fact that language has to
be taught from one generation to the next and that
compositionality can compress the number of rules
that have to be learnt (compare, for example, the
8x8x8 holistic rules as opposed to 8+8+8 composi-
tional ones needed in an optimal case to span the
input space described above). But focussing on
compression alone might neglect important other
properties: Most of all, language is there not to
be taught but to be used, to refer to meanings “in
the world”. So the difference in my system is that
the rules are actively used all the time and being
shaped by the interactions between the agents and
the influence of the input space.

Experiments with Compositionality

Due to the design of the system, coherence is hard
to achieve when compositionality is switched on –
whenever a compositional rule describing a certain
part of an input vector has died out, the rule cre-
ation mechanism will eventually propose the cre-
ation of a new rule of the same content. So there is
a permanent deleting and creating of rules. Be-
cause of that, the graphs describing the holistic
experiments do not say as much in this context –
they show very bad coherence and entropy values
because statistically, the chaos of the created and
deleted rules shows up a lot stronger than the few
consistent rules (only the success and understand-
ing graphs indicate that there must be something
going right after all).

Also, the number of rules in use by an agent is
a lot bigger and it is hard to see anything when
examining an unedited lexicon overview.

Still, one should not conclude from the cluttered

like the systematicity existing between these icons.
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graphs of the population functions that there is
nothing to observe but noise. To get an idea of
what has happened in the population, I will have a
look at only those rules that all agents have a score
of .6 or above for.

There are two experiments which have been
made with compositional processing turned on in
the agents: One with the “idealized” environment
of eight equally distributed input vectors and one
with the input space as provided by the image data.
Both games have been played 2100 rounds with
two agents only (it turned out that even with two
agents, things tend to become complex enough in
this case).

The question is whether a compositional lan-
guage structure arises in any of the two.

Figure 14: Game ’compositionality without envi-
ronmental influence’: Population functions

Compositionality without Structure

Looking at the trends in figure 14 after 2100 games,
things do not seem to go very well. Entropy seems
to be inreasing, as does the average number of rules
per agent. Still, the language does work somehow:
Success is around 1 and understanding is shaky but
remains at least around .7 (note that the graphs are
smoothened; what is plotted is the moving average
of the original values with a width of 50 values – so
it cannot be said in a literal sense that understand-
ing never drops under .7).

The lexicon overview (see figure 26 on page 52)
explains what is happening. As mentioned above,
this overview is pruned to only show the strong
rules (> .6). There a seven rules that are agreed
upon by both agents with a score greater than .6,
in fact, they have a score of 1.0. These are holistic
rules expressing seven out of the eight possible in-
put vectors. One input vector (0 0 0) seems to be
expressed compositionally as a corresponding rule
is missing, but no canonical way has been found to
express it.

So all the chaos in the system is caused by the
agents inventing new compositional rules that never
make it because there is no advantage in using
them: The way for a compositional rule to get
stronger than its holistic concurrents is to be used
more often than they are. This happens only when
the rule is used for several vectors, especially ones
that are not expressed by any holistic rule either.
In this case, however, the holistic rules are created
very early (looking at the internal numbering shows
that the surviving rules are among the first ones
that have been created by the agents ever), soon
reach 1.0 confidence and it becomes unlikely (al-
though not impossible, as the example of (0 0 0)
shows) that later created compositional rules can
ever catch up with them.

Seeing seven out of eight vectors expressed in a
holistic fashion may be enough evidence to state
that in the absence of a structure, the communica-
tion system that evolves also remains unstructured.

Compositionality with Structure

Again, the graphs of the population (figure 15)
looks little promising. But again, the success val-
ues indicate the language works nevertheless. Also,
entropy does not seem to keep on rising and the
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Figure 15: Game ’compositionality with environ-
mental influence’: Population Functions

number of rules does not to increase as strongly as
above. An interesting value is compositionality: it
seems to settle at about .4. While it is hard to judge
what this means exactly, looking back to the pre-
vious example, where it remained at about .3, one
might take this as evidence that compositionality
is at least stronger than there.

Looking at the lexicon overview of the strong
rules after 2100 runs, there are in fact stable holis-
tic and compositional rules. The ten most frequent
colours have been assigned holistic rules (except
the second strongest one, 545). The strong holistic
rules deal accordingly with many of the more fre-
quent colours that were not assigned holistic rules
(including 545). The only rule that has two free
components ((L ?) (U 2) (V ?)) has successfully
found the largest regularity in input space (when
not taking into account the nine rules that are cov-
ered otherwise) – that 9 out of the remaining 22
vectors have a U value of 2.

Refer to the picture on the bottom on page 31
for a visualization of the rules. It shows the distri-
bution of rules in the input space with the score of
a rule, e.g. 1.0, being distributed over all vectors
a rule covers, so ((L ?) (U 1) (V 1)) counts as a
0.125 scored rule for 011, 0.125 for 111, and so on.
It can be seen how many vectors can be expressed
that are not represented in the input space. One
can also see how the highly frequent input vectors
are bigger then other vectors right next to them,
which means that there a holistic rules increasing
their score only, but not the one of their neighbours.
This basically fits the detailed analysis given above.

Concluding, it can be said that in this case, com-
positionality did arise.

Results

It has been shown how compositionality arises,
given a suitable environment. The language adapts
to best match the meaning space it is used to talk
about. Similarities in the “world” are found and
reflected in the way they are expressed.

Of course, the results have to be seen relative
to the parameter settings. It would be possible
to boost compositional rules so strong that they
won in an unstructured environment, or to make it
so hard for them that they cannot succeed in the
structure example. So I cannot claim that composi-
tionality arises under any circumstances as long as
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structure is to be found in the environment. What
makes the results interesting in spite of their de-
pendance on parameters is that those parameters
remained the same for the two experiments. So,
all other things being equal, presence or absence of
compositionality in language can be said to depend
on the amount of structure in the environment.

Despite its simplicity, the model already shows
some behaviour that is known from actual lan-
guage. High-frequency verbs (like “to go” and “to
be” in English) tend to behave irregularly; regu-
lar behaviour however resembles compositional be-
haviour on a morphological level, such that one
might argue that frequently used rules tend to resist
being split up and integrated into a compositional
system just like they do in the simulation.
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Figure 16: Distribution of Input Vectors, Holistic Rules and Compositional Rules
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5 Emergence

Regarding the program described so far, we can see
how certain effects take place that can only be ob-
served when looking at the whole system. Although
it has been shown how the global behaviour of the
system is rooted in local interactions, the formation
of a shared lexicon is a behaviour exhibited by the
population, not by single agents.

If we examine charts displaying values related to
this behaviour, they describe the behaviour of the
whole group of agents, as if observing the group as a
single individuum, on a higher level of description.
While some values are just averages over the con-
tained agents’ values (which does not make them
particularly strong examples of group-level prop-
erties), other values like the lexicon entropy are
unique to the group itself and would not make sense
in a single-agent context.

Further abstraction from such collective val-
ues can lead to qualitative statements about the
group’s behaviour, like the ’creative explosion’ and
’cooling down’ phases described above, or the fact
that a succesful communication system is estab-
lished at all.

The rest of this thesis will focus on questions
regarding this relation between the simple and the
complex properties of systems.

5.1 Explaining Complexity

Understanding how complex behaviour is formed
by simpler mechanisms is fundamental to science.
As complexity grows, new theoretical levels may be
formed. Only when, for example, more atoms are
regarded at once, chemical properties like temper-
ature begin to have a meaning. For them to be sci-
entifically grounded, however, it is important that
they can be explained by terms of a lower-level the-
ory like, in this example, physics. Often, however,
it is the more complex behaviours that we become
aware of first. Temperature was known long before
the existence of atoms, to stay in the example. It
is then the task of science to reduce phenomena to
underlying theories, or even to find the underlying
theories in the first place.

Although this is the way modern science has
worked for a long time now, it is not proven that
this approach leads to success with every possible
phenomenon. There have been (and there still are)

cases where it seems that properties cannot be ex-
plained like this.

Facing a failure to apply the traditional ap-
proach, two contradicting positions were tradition-
ally held. The physical monist point of view would
insist that the phenomenon in question is reducible
in principle and that a failure to do so can only
be explained by missing knowledge about the ba-
sic theories (or that there is something wrong
with the explanandum itself, like in eliminative
materialism claiming that the whole mind/body-
problem comes from sticking to what, for example,
[Churchland, 1988] calls “folk psychology”).

One might argue, however, that, for example,
conscious experience (“Qualia”), the genuine feel-
ing of, e.g., seeing the color red, has something to
it that cannot be grasped by even the most sophis-
ticated neurological analysis. The way “life” comes
into existence from biochemical interactions is an-
other example of a field that led to raise doubts
about the completeness of the reductionist method.
It seems that in both cases, something qualita-
tively new (as opposed to just continuously rising
complexity) seems be innate to these phenomena.
And so, an opposing, dualist point of view would
claim that these properties belong to another do-
main that exists beyond that one where the laws of
natural sciences apply. For example, a supernatu-
ral “res cogitans” has been postulated by Descartes
to be responsible for mental states.

Both approaches have their problems: neglecting
certain phenomena for the sake of a consistent sci-
entific model may be regarded as more acceptable
as leaving the domain of the sciences at all, but it
is not an ideal solution anyway.

The emergentists then tried to find a sort of
compromise between the two approaches, with the
first fundamental books on this topic, according to
[Stephan, 1999], being published in the beginning
of the 1920s: [Alexander, 1920], [Sellars, 1922],
[Morgan, 1923] and [Broad, 1925].

First of all, everything was supposed to remain
under the causally closed domain of the physi-
cal world (no dualism). Still, the existence and
relevance of system-level properties was accepted.
Properties could show up only from a certain level
of complexity onward. These would then be called
emergent. Attempts to further narrow down the
concept and to point out its consequences were the
made in the works of the emergentists.
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5.2 Weak Emergence

Basis for all theories of emergence is the so-called
weak emergence. It outlines the basic character of
emergence already mentioned and can be defined by
three axioms, taken directly from [Stephan, 2002]:

1. Physical Monism Entities existing or com-
ing into being in the universe consist solely
of physical components. Likewise, properties,
dispositions, behaviours, or structures classi-
fied as emergent are instantiated by systems
consisting exclusively of physical entitities.

2. Systemic Properties Emergent properties
are systemic properties. A property is a
systemic property if and only if a system pos-
sesses it, but no part of the system possesses
it.

3. Synchronic Determination A system’s
properties and dispositions to behave depend
nomologically on its micro-structure, that
is to say, on its parts’ properties and their
arrangement. There can be no difference in
the systemic properties without there being
some differences in the properties of the
system’s parts or their arrangement.

So the basic nature of emergence is decidedly non-
esoteric. The first axiom rules out any supernatural
entities involved and the third one makes sure that
in the relation between those entities, there are no
supernatural influences either. The definition it-
self, in the second axiom, does not make any strong
claims either; nothing is said that would preclude
reductionism.

5.3 Stronger Definitions of Emer-
gence

To solve the philosophical problems mentioned
above, the weak definition of emergence does not
help much. The two major questions, how prop-
erties might arise that have new qualities in such
a way that these qualities cannot be explained
to lower-level properties only, and how properties
may arise that are genuinely new, are dealt with
by two branches of emergentist theories labelled
synchronic and diachronic emergence by Stephan
(ibid.).

Synchronic Emergence

Synchronic emergence is what weak emergence is
turned into when we add the condition that the
emergent properties be irreducible. While practi-
cal difficulties in explaining system properties are
well compatible with weak emergentism, synchronic
emergentism aims for the principal irreducibility.
If such properties could be proven to exist within
a scientific frame, mental properties irreducible to
their physical implementation, for example, could
be shown to be consistent with a scientific world-
view.

Stephan (ibid.) lists the necessary conditions for
a property to be reducible:

1. The property to be reduced must be function-
ally construable or reconstruable, respectively;

2. It must be shown that the specified functional
role is filled by the system’s parts and their
mutual interactions;

and

3. The behaviour of the system’s parts must fol-
low from the behaviour they show in isolation
or in simpler systems than the system in ques-
tion.

So irreducibility would require at least one of the
above conditions to be violated. Stephan continues
showing that violation of any of the latter two con-
ditions would imply new types of causal influences
going back from the system to its components parts
(“downward causation”), which would violate fun-
damental assumptions as the causal closure of the
physical domain. This is the very kind of conflict
emergence was supposed to solve – so these two
cannot work.

For the first condition to be broken, however,
it would suffice that the systemic property not be
functionally construable. I cannot go into this in
very much detail, but this finally amounts to saying
that for a property to be synchronically emergent,
it needs to be epiphenomenal, that is, it must not
have any causal role.

Diachronic Emergence

Diachronic emergence emphasizes the notions of
novelty and unpredictabilty. Citing two criteria
from Stephan (ibid.):
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1. Novelty In the course of evolution exemplifi-
cations of genuine novelties occur again and
again. Already existing building blocks de-
velop new constellations; new structures are
formed that constitute new entities with new
properties and behaviours.

2. Unpredictabilty The rise of a new structure
is unpredictable in principle, if its formation
is governed by the laws of deterministic chaos.
Likewise, any property that is instantiated by
the novel structure is unpredictable in princi-
ple.

Note that the second point does not exclude
other reasons for unpredictabilty. Randomness or
irreducibility (which implies unpredictability be-
cause if we cannot know how the base properties
cause the emergent property, we cannot use them to
make any prediction either, so irreducibility implies
unpredictability) would be two other candidates,
but unpredictability caused by randomness is triv-
ial and irreducibility has been dealt with above.

The Fate of Emergentism

Just to quickly continue the story of classic Emer-
gentism – we know that reductionist approaches
dominate natural sciences today, and emergentist
theories in the stronger sense are not a part of scien-
tific explanation (although the mind/body problem
still resists scientific analysis with usual methods).

Emergentism could not introduce a solution to
the mind/body problem or other questions of sim-
ilar structure. The seeming contradiction between
a deterministic universe and genuine novelty could
be resolved by refering to deterministic chaos. Syn-
chronic emergence however, which could have been
the bridge between physical monism and dualism,
a foundation for a “non-reductionist naturalism”
– turned out, as shown above, to be logically in-
consistent with science as long as the properties in
question are supposed to have a causal function.
It is currently debated whether this is the case for
qualia (see, for example, [Chalmers, 1996]), but in
general, this does not seem to be a very satisfying
solution. Still, emergence has recently had a revival
as it has become a key concept in fields concerned
with self-organization and bottom-up effects. The
notion of emergence used in this context will be
dealt with in the following.

In addition, the reductionist program is
not as unchallenged as one could assume
it, especially in the natural scienes, to be:
[Prigogine and Stengers, 1984] give a detailed ac-
count of how nature came to be thought of as de-
terministic, mechanic and dead (ranging back to
Newton’s discovery of gravity which was thought to
be the one force to reduce everything else back to),
and how this view neglects other theories (namely
thermodynamics, going back to Fourier’s observa-
tions on the diffusion of heat) stressing the random,
irreversible and complex sides of nature. Prigogine
describes how, by this, a distance has been driven
between nature and humans by viewing nature as
mechanic and ourselves as special, animated, non-
deterministic organisms.

While this does not exactly go into the same di-
rection as the Emergentism debate, both discus-
sions agree in their critic of a purely reductionist
approach and by stressing the importance of pay-
ing attention to higher-level phenomena. As Pri-
gogine puts it, the method of reductionism should
have been to disassemble parts, look at how they
work in isolation, and put them back together to
understand the whole. He blames today’s scientific
practice of “forgetting to put the parts together
again”.

5.4 Weak Emergence Revisited

In the emergentists’ enterprise, the goal was to find
a theoretical framework in which properties could
exist that would escape standard analysis without
leaving the natural scienes’ domain. It has been
shortly sketched how these efforts lead to problems,
especially in the case of synchronic emergence. In
the presence of these metaphysical questions, weak
emergence seemed rather unspectacular and did
not promise much advance.

In the context of Artificial Life, however, one of
the fields where emergence has experienced a re-
naissance these days, it seems that the only type of
emergence that would be plausible to talk about is
the weak one. Not only are cases hard to think of
where stronger kinds of emergence might take place
in such a context – they would actually even be un-
desirable: Yes, new properties, new behaviours are
among the key interests of AL research, but in such
a way that the very mechanisms of how they come
into existence are the target of the researchers’ ef-
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forts. Diachronic emergence, the instantiation of
previously inpredictable properties, would just not
contribute to answering these question (although
it would, of course, be an impressive phenomenon
– maybe the adherents of Strong AL, striving to
create “real” new life, would in fact take a more
positive stance towards something like this). And
yes, properties, behaviours coming into existence
out of lower-level ones are the subject, but again,
it is the mechanisms, the interactions that cause
them that are of interest – strong synchronic emer-
gence would in fact mean that the search for these
mechanisms on lower levels is principally futile.

So it turns out that the whole motivation of us-
ing a concept like emergence is different between
the emergentists’ approach and today’s studies of
complex behaviour. Stephan (2002) mentions that
he only included weak emergence as a theory on
its own in his systematic account of emergentist
theories because it is held as one today, not be-
cause it was held during the emergentists’ period.
In Stephan (1999), modern uses of the word emer-
gence (like in connectionism or studies of self-
organization) are examined and in fact, they are
all “weak”. This may seem disappointing, but it
should have become clear that the demands for the
concept are just different; weak emergence then is
just the link between two theoretical frameworks.

Weakly Emergent as Special Systemic Prop-
erties

If today’s meaning of emergence is identical with
the one defined by weak emergence, for a property
to be emergent would mean that it is a systemic
property, i.e., that it exists in a system, but not in
its parts. This provokes the question, however, why
such a property should not just be called systemic
in the first place.

The answer is that systemic and emergent prop-
erties are not the same after all. There is some-
thing special required for a systemic property to
be emergent that seems pretty clear on an intuitive
level (as, once familiar with the word, one tends
to have a strong, instant opinion on whether some-
thing should be called emergent or not), but which
is very hard to grip on a formal level. We have seen
that the hard criteria of irreducability and unpre-
dictability do no get us further in this context, and
yet, there is something about novelty on both a sys-

tematic and a temporal scale, about things happen-
ing “from the bottom up” that remains associated
with emergence.

It turns out that the intuitive approach to emer-
gence contains a serious danger: one may easily fall
for a notion of emergence that contains subjective
judgement.

A typical example of emergence is the ant be-
haviour that leads to the characteristic ant paths
– the question is how the ants manage to find the
shortest way between a source of food or material
and their home. It turned out that ants perma-
nently pour out pheromones, and that they also
follow the pheromone gradient (produced by them-
selves or other ants before) in their environment.
So if a food source is found, an ant is likely to
go back to the nest just to go to the same point
again to fetch further portions of food. Thereby, it
enforces the pheromone trail, increasing the prob-
ability of other ants to go into the same direction.
Those ones that find a shorter path will cross this
path more often, resulting in the pheromone trail
being reinforced even more often. So, the behaviour
that makes the society of ants seem like an indi-
viduum being able to find an efficient path is caused
by the interactions of its component parts, the sin-
gle ants.

Another example of parts working together to
create a new property is a car. There is no speed in
a wheel, neither is there speed in a motor (in a sense
that the motor alone would change its location).
Still, when all the parts are put together correctly,
the whole has the property of moving around in
space with a certain speed. However, one does not
find claims that a car’s speed be regarded as an
emergent property. And one would not expect it to
be. But what exactly is then the difference between
those two systemic properties?

[Ronald et al., 1999] propose a definition of
emergence that contains “surprise” as a criterion.
This is then further specified as requiring a “non-
obvious” relation between the potentially emergent
and the basis properties. So one subjective term is
replaced by another – one can easily imagine how
one and the same phenomenon may be obvious to
one person and absolutely mysterious to another.
Emergence would then somehow describe a psycho-
logical phenomenon inside the observer, and occur
or not occur depending on the person trying to un-
derstand a system. This cannot be the solution –
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at least it is not a useful one. It basically equates
emergent properties with (at least spontaneously)
ununderstood properties.

Still, this approach gives a written account of
the intuitions underlying emergence. The question
is whether there actually is a formally valid, sensi-
ble account of this that could help us understand
certain mechanisms once they’re classified as emer-
gent, or whether things get logically consistent as
soon as we try to get more than intuition out of it.

There is a notion of emergence using the terms of
uncontrolled and invisible variables ([Steels, 1995])
that [Clark, 1998] uses to define what he calls an
“emergent explanation” of a complex system. This
emergent explanation stands as alternative to what
he calls “toss- and throw-explanation” (which is not
relevant in this case) and “componential explana-
tion” which is what could typically be called a re-
ductive explanation. There is a reason, however,
why Clark uses this term instead of mentioning re-
duction: He wants to make sure that the third,
emergent explanation is not understood as an anti-
reductionist approach. This shows he holds a weak
emergentist position; at the same time, he provides
two alternative approaches to understanding com-
plex systems. So it seems that he does not auto-
matically equate collective with emergent proper-
ties (which is the kind of weak emergence I have
been looking for above).

A controlled variable (in this context) is a vari-
able that an agent or a system can influence di-
rectly. A visible variable is one that it can, if not
influence, at least observe or read. Clark’s defi-
nition of emergence is that a phenomenon should
be considered emergent, if it is best described by
describing variables that are uncontrolled or (the
stronger claim) even invisible to the system. The
global pheromone gradient causing the ant path to
take a certain form, for example, is not available to
the single ant. Neither can it change it as a whole,
nor can it see all of it. So the ants are guided by
a structure that is beyond their scope (they can
access it locally, but that is not a contradiction –
there has to be some way of interacting with it). A
car, however, has dedicated parts to measure and
influence its speed (to put things very simple).

Because of this, the car can be explained well
by refering to its components and their function;
the ant society, on the other side, shows behaviour
that is best described by refering to values its com-

ponents cannot be related to. Following Clark’s
approach, this is the difference between componen-
tial and emergent explanation; phenomena suggest-
ing an emergent explanation would then be called
emergent.

As Clark remarks, there is still a certain subjec-
tive taste in this by refering to what is supposed to
be a “good” explanation. This seems a viable com-
promise, however. Saying something like “Emer-
gence is when we have to go to a higher level of de-
scription to understand what is happening” is a lot
more valuable than saying “Emergence is when we
are surprised”. Whether a given theory succeeds
or fails to explain a certain phenomenon should
be a rather objective criterion as well, or at least
less dependent on individual factors (trying to ex-
plain where a single ant’s path comes from without
refering to the greater context seems to be an ob-
jectively worse explanation than trying to explain
where a car’s speed comes from without refering to
the greater context of the whole car system). This
concept is of course never as strong as the proof
that a new level of complexity has been reached
that makes all reductive explanation futile. But it
gives a rather stable criterion about which systems
have to be regarded as being more complex than
others, at least when trying to explain them.

A Last View on Strong Emergence

It is a difference whether we talk about things that
really happen in the world or whether we use them
as a way we see it. There is always a bias in the
way we perceive reality so there may not be a bi-
nary cut, but in the case of emergence, there clearly
is a difference: Whether there are really situations
in nature where genuinely new things arise, and
things happen that do not happen in lower levels,
or whether it is just theoretically convincing not
to reduce them. This difference could be seen as
another way to distinguish weak from strong emer-
gence.

In fact, the dispute whether certain concepts re-
fer to reality or serve as theoretical tools in explain-
ing it, is common to other “weak/strong” debates.
Is Artificial Life about creating life or about under-
standing mechanisms of life? Is Artificial Intelli-
gence about creating real intelligence or about sim-
ulating it? The question whether emergence refers,
e.g., to something happening out there in a brain,
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for instance, or whether it is an approach to under-
standing what is happening in the brain seems to
fit into this family of questions.

6 Emergence in the System

Now that various definitions of the emergence have
been introduced, I will look at the actual system to
check whether any of the potential phenomena ob-
served can be called emergent. The purpose is to,
on one hand, see how the system’s behaviour can
be further categorized, thus enabling, for example,
comparisons with other work dealing with collec-
tive phenomena. On the other hand, the notions of
emergence themselves are also examined with re-
gard to their applicability in the current context.

To do so, I will set up three working hypotheses
about emergence in the system analogous to com-
mon uses of “emergence” in related situations. I
will then continue to check each one in detail.

1. “As a series of games is played, a com-
munication system emerges.”

Here, emergence is used to refer to the process of
something coming to existence, a lot like in every-
day language, or, more specially, to the process of
linguistic structures coming into existence, like in
[MacWhinney, 1999].

2. “The communicative behaviour of a
single agent can be said to be emergent.”

This is a use of emergence refering to the rela-
tion between properties of a robotic (or simulated
robotic) agent and the properties of its functional
components, as described in [Steels, 1995].

3. “The population shows emergent be-
haviour.”

Now, the agent ist the part and the whole system
regarded is the population of all agents. This is
the typical way emergence is used to describe be-
haviour in self-organizing systems (see, for exam-
ple, [Camazine et al., 2001]).

6.1 Emergence of a Communication
System

The agents start without any communication sys-
tem at all. Not only do they not share any vocab-
ulary, the single agents do not even have words on

their own to name the inputs they get. As games
are played, agents make up words to express what
they see, and as they share those words with their
communication partners, the word/meaning-pairs
spread over the whole population, resulting in a
successful communication system. Although ambi-
guities remained in the simulations with real world
input, mainly due to some input vectors appear-
ing just too rarely to guarantee full convergence, it
has been shown that the mechanisms at work can
principally produce a coherent lexicon shared by all
agents. Even with those slight variations among the
individual lexica, the communication system can be
said to be successful (these variations exist in hu-
man language as well) as understanding approaches
1. There is a major part of the vocabulary that all
the agents agree upon, and an agent may under-
stand a word even if it does not favour it.

So it is surely justified to speak of the existence of
a “global” lexicon as a linguist might create it after
intensely studying the communicative behaviour of
the agents. Or, as a new agent would learn it (or,
more likely, again a small variation of it) when it
enters the population (this could actually be tried
out but hasn’t been yet; one can imagine, however,
how the new agent’s new words will have a hard
time concurring with the mostly stabilized existing
ones, resulting in the new agent taking over the
established rules while changing them at most a
little bit).

Emergence as a Process

So something is created and one might be willing
to call this emergence – but does it make sense
to ask about the emergence of a lexicon using the
definitions introduced?

If we say that something emerges, in the sense of
something coming into existence over time, emer-
gence is used to describe a process. In the defi-
nitions above, however, there is no temporal as-
pect. Properties can be emergent with respect to
others, but this refers to properties being instan-
tiated at the same time. In fact, there is some
temporal aspect in diachronic emergence, but this
is about properties being instantiated at a given
point in time that have never been instantiated be-
fore. There is no reference to a process in this ei-
ther.

Also, another point why above defintions are not
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applicable: A structure (like a lexicon) is not a
property. To take a very simple example: My hand
is not a property. Having a hand is a property of
mine, and having grown a hand years ago is a prop-
erty of my organism, and it will be shown later how
the properties of creating something and the thing
itself hang together when talking about the emer-
gence of either of them; but for emergence as in-
troduced so far, it just does not make sense to ask
if the lexicon is emergent because this translates to
“it the lexicon is an emergent property” which is
an invalid in itself because the lexicon is not even
an unemergent property.

So it seems there is even another type of emer-
gence which I will call the “process-type”. I would
claim, however, that this is more like the “every-
day” use of the word, in the absence of explicit
definitions (cf. “emerging markets”, for exam-
ple). As an example, “Emergence of Language”
([MacWhinney, 1999]) does not give a definition of
what emergence might be at all – it does, however,
state that emergence can take place on a variety of
time scales. So process-type emergence seems to be
meant when no other definitions are given.

Emergence of Language

An interesting point is “emergence of language”.
When I first heard about the work on emergence

of language, I thought it was about the relation-
type: How does the abiltity of language processing
and creation emerge from lower-level routines like
associative learning, pattern matching and so on?
To claim that language is emergent in this particu-
lar way could be useful in the innatist / interaction-
ist debate: If there is no such thing like a universal
language device, one might express this by saying
that language emerges (somewhat as a side-effect)
over the more basic intellectual capabilities of hu-
mans, wheras the existence of such a specialized
device would surely forbid calling the very capabil-
ity it is designed for emergent.

It turned out that research on emergence of lan-
guage was, at least partially, meant in a different
way: What are the processes involved in the cre-
ation of language, or of languages12. In this con-
text, language is viewed not as a property, but as

12As I have recently learnt, French is more precise in
this distinction, calling a language language, but the phe-
nomenom language as a whole langue

a structure that’s being built and modified.
Of course, the two questions of language capabil-

ity and language formation are intertwined, but I
think one can clearly distinguish the two uses of the
word emergence in that case. The current context
is about language formation; the other two points
are about language capabilities (language always to
be seen in slight quotation marks).

Result

So can we say that during the course of the game,
a communication system emerges or not?

We could just say it because there is no definition
attached to it and it seems like common use of the
word in everyday language.

However, the kind of activity or behaviour lead-
ing to the creation of a structure might be the rel-
evant point whether to call its coming into exis-
tence emergent or not, with a stronger meaning.
Below, it will be checked whether the behaviours
that cause the communication system to be cre-
ated are emergent or not. It will turn out that (ac-
cording to Clark’s definition) there is an instance of
emergent behaviour involved in the creation of the
communication system, which at least supports the
definition of process-type emergence I would like to
propose just a final note on this: “The instantia-
tion of a structure can be called emergent if the be-
haviours contributing to its creation can be called
emergent.” (according to which the answer would
still be yes).

6.2 Emergence of Communicative
Capabilities inside a Single
Agent

It might be interesting whether the capability of
language production and comprehension results
from interaction of other, independent systems or
whether it is “hard-coded”.

For humans, this might amount to the question
whether or not there is a specialized language de-
vice. Talking about computer programs, the corre-
sponding task would be to find out if the behaviour
in question is explicitly written down in the pro-
gram code or whether it takes place as a side effect.
[Cangelosi and Parisi, 1998], for example, show a
model of how a simple, binary signalling system
may come into existence in a population of neural
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networks. Although there is a selectional pressure
for understanding signals, there is none for produc-
ing (there is no reward for altruistic behaviour or
anything like this either). Still, the networks arrive
at producing coherent output. It turns out that the
production of coherent signals in their nets devel-
ops in parallel with the ability to correctly classify
input. The coupling between the classification and
the output parts of the net then takes place, as
pointed out by Barbara Hammer (personally), as a
result of dynamics inherent to the network archi-
tecture (“genetic drift”).

In the agents I programmed, however, the com-
municative behaviour consists of pattern matching
and associative learning – both of which are hard-
coded. There is no behaviour in the agents’ pro-
gram which goes beyond the parts’ functionality.

Proving the absence of emergence

How can this be used to formally show that these
properties are not emergent? It turns out that
claiming emergence and failing to prove it is easier
than actually proving the non-existence of emer-
gence: In order to really prove the absence of emer-
gence, it had to be shown that there cannot be any
uncontrolled or invisible variables using which the
behaviour of the system could be described better
than by describing the behaviour of components it
is made of and their interactions. First, this con-
dition sounding a bit strangely shows that the def-
inition found is still not as formal and observer-
independend as one could wish. Second, disregard-
ing the difficulties of “principal absence of a bet-
ter explanation”, it might be hard to prove that
it is impossible there are system-level variables un-
known to me. So I can only argue that there is but
one that would occur to me.

The only candidate I can think of is what could
be called a “single lexicon emergence”: one could
measure the average amount of entropy in the
agent’s own lexicon, and claim that the agent’s be-
haviour can be described as striving to minimise
this entropy, which is a variable invisible to all of
the agent’s system. Although this looks tempting,
entropy in fact does not really exist in an isolated
agent. It is only with other agents that multiple
forms for a meaning enter the agent’s lexicon – and
only then, entropy starts to rise above 0. So I would
suggest counting this behaviour as belonging to the

population dynamics. Furthermore, one may argue
whether the agent’s behaviour is entropy-reducing
in the first place. As it turned out in the first sim-
ulation described, two meanings with about equal
score may survive in parallel for a long time. When
finally one of them wins, it is due to random choices
which rules and also which agent to use. So describ-
ing the agent’s behaviour using its internal lexicon
entropy might be futile anyway.

So the individual agent’s communicative capabil-
ities cannot said to be emergent.

6.3 Emergence of Communicative
Capabilities inside the Popula-
tion

In the first examination of emergence, it has been
shown that there is a communication system and
that the process of its instantiation may be called
emergent – mainly due to the lack of a strict defini-
tion. As mentioned above, the disposition to build
such a communication system, that is, agreeing on a
shared lexicon within a population, is a property to
which the assumed for criteria for emergence may
apply.

So the question is whether there is a description
of the system and the way it creates a coherent
lexicon that refers to system-level variables uncon-
trolled or invisible to the simple agents. If one
could then judge that this description gives a bet-
ter acount than a componential one, the observed
phenomena can be called emergent.

The componential description already exists: See
chapter 3 on the system’s implementation. The fact
that letting the system actually run may produce
interesting results not obvious from the system’s
setup – as shown in chapter 4 – may already be
seen as a first hint that the system’s dynamics are
not fully described by the single agents’ dynamics.

I will only look at a description for the coherence-
establishing behaviour in the population and not to
deeper into an analysis of the behaviour that can
lead to compositionality. Also, I will not make up
a complete system-level theory of how the system
works. I will just list the two sentences that I use to
describe the system’s behaviour in a quick, under-
standable way, and then check for each one whether
it is an emergent or a componential description.

1. “The population creates a shared lexi-
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con.”

It turns out that even this most superficial descrip-
tion of what is happening already is an emergent
one: To say that a shared lexicon is created refers
to the relation between the single agents’ lexica –
to which the single agent does not have access, as
it can only see its own one. The coherence measure
defined for two lexica is hence an invisible variable
to the agent.

Also, the shared lexicon in itself is a very inacces-
sible kind of system-level variable. In the end when
the agents match perfectly, one can just take one
of the agent’s lexica to get hold of it. As long as
there is incoherence, however, one might actually
say that there is a good portion of a lexicon that
already is shared – but it is nowhere to be found as
a data structure in the program. One might only
try to access it by looking at the commonalities of
all the agents’ lexica (a bit like what I have done in
the lexicon overviews for the compositional experi-
ments).

The final, strongest argument is that in order to
predict the system’s behaviour – to predict, for ex-
ample, which of the form/meaning pairs concurring
in the population will eventually win –, local infor-
mation does not help at all. What is needd is the
global picture of all the scores in all the lexica.

2. “The system’s behaviour can be split
into two phases.”

Back in section 4.2, I was astonished to find the
behaviour of the system to be (in the idealized case)
split into two phases which I labelled the “creative
explosion” and the “cooling down” phase. I then
posed the question whether this was a case of emer-
gence. Now, enough fundament has been laid to
answer that question. The answer is, however, yes
and no. “No” because the fact that I was surprised
of course does not make anything emergent.

“Yes” because these properties are nevertheless
emergent, but for another reason than surprise:
Because these are phenomena observed in system-
wide variables uncontrollable und invisible to the
single agents. The transition from the first phase
to the second shows up as the entropy stops in-
creasing and decreases, approaching 0, while co-
herence (as a somewhat complementary measure)
turns to increase and starts to approach 1. These

variables are, as has been argued before, system-
level variables which cannot be seen by the agents
as they capture the relation between two lexica.
Still, the transition can also be seen in the number
of rules per agent starting to decrease – which is
although not immediately controllable at least visi-
ble to the agent. So one might argue that coherence
and entropy are just derived values based on local
properties. Although coherence and entropy do not
just go back to rule numbers anyway (as one might
imagine each agent having a minimum number of
rules without anyone understanding the other), this
may still serve as a motivation to find a better clue
for the emergent character of this phenomenon.

Looking for the actual causes of the phase tran-
sisition may be of help. As mentioned above, it
lies in the fact that for each input vector i, there
is a point ti in time when each agent has seen it at
least once. From that point on, no more words for
this vector can be invented. The agents may con-
tinue a while learning new words from other agents,
but the set of word/meaning-pairs in the popula-
tion does not get larger anymore. The only thing
that can happen is that complete word/meaning-
pairs die out because in all agents, the correspond-
ing rules have dropped to 0. But this means that
the behaviour of the whole system depends on the
points ti at which all agents have seen input vec-
tor i once. These are, much clearer than coherence
and entropy, real system-level variables depending
on the number of agents and the structure of the
input space (plus randomness, although not decid-
ingly). There is now way in which the ti can be
seen from within the scope of single agents.

This explanation seems like a better argument
for emergence than just pointing out to the impor-
tance of coherence and entropy; not only because
the ti are clearer of systemic character; also because
the property is not only described, but actually ex-
plained by means of a systemic variable.

Both ways of going into the details of the de-
scribed behaviour, however, are emergent ones; it
is the question whether there exists a componential
explanation of it at all. At least, in the specification
of the agents and the way they are made to inter-
act, I did not find evidence for such behaviour. If
there is a componential explanation or even only a
description, it is well-hidden. This nicely prevents
me from having to compare the emergent expla-
nation to a componential one; I just claim that a
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plausible, available description is a better one than
one which is well-hidden and may actually be non-
existant. So the emergentist explanation is the one
of choice – which would classify this behaviour, ac-
cording to Clark’s defintion, as emergent.

The cooling down phase alone, by the way, is ana-
log to one of the paradigmatic examples of emer-
gent behaviour: simulated piling behaviour of ter-
mites ([Resnick, 1995]). As pieces of material are
randomly shifted from one pile to another (like
scores being reduced and increased many times in
row), there is a possibility of one termite taking the
last piece from a pile (all agents reducing the score
of a rule to 0), but there is – because pieces are
only dropped onto existing piles – no possibility for
new piles to be created (no new rules are created
because this only happens in the absence of any
rule for a meaning, which is per definition not the
case in the cooling down phase).

To come back to the infamous surprise element of
emergence, there actually is a relation between my
astonishment and the emergence, but it is different.
It is not my surprise that causes emergence. It is
also not the case that emergence has to cause sur-
prise. But my surprise and the emergent character
of my system have the same cause, invisible vari-
ables. As I have been writing code for single agents,
not for the population, some systemic properties
are for me in a way as potentially uncontrollable
as for my agents. So although this surprise is not
necessary (it could have been my goal to achieve ex-
actly this behaviour and in fact, much of the emer-
gent behaviour was really planned to take place), it
is at least plausible that system-level uncontrolled
or invisible variables are instantiated outside the
designer’s attention (as they do not show up as
variables in the program code). This explains the
frequent cooccurence of emergence and surprise. It
also explains the importance of emergence for AL
. Emergent properties of Artificial Life systems are
those that are implicit consequences of the written
code. As stated above, they do not have to be ir-
reducible (in fact, we wouldn’t want them to be);
nor do they have to be unknown first. But the rea-
son why it makes sense to use multiagent systems
as exploratory tools at all is to find those of the
emergent properties that were not obvious in the
first place, to the programmer who has built the
agent, or to the biologist being able to describe an
organism’s structure and its behaviour in isolation,

but unable to deduce its situated behaviour from
that.

7 Results & Outlook

7.1 Emergence

There are two directions in which the results con-
cerning emergence can be interpreted.

Taken the definition of emergence finally used, it
could be shown that those parts of the system that
intuitively seemed to behave in an emergent man-
ner can really be called emergent based on formal
criteria.

If, on the other hand, the definition is not taken
for granted and its use in the given context is to
be examined, the results suppose that this defini-
tion correctly identifies those behaviours that work
in a non-centrally controlled, bottom-up fashion.
One can imagine situations in which a system is
more complicated and it is less obvious whether its
behaviour can be called emergent or not. Which
might, for example, affect the decision if a given,
’high-level’ explanation can be seen to be satisfying
or if an explanation that relies more on the individ-
ual components would be pursued. Then, showing
that such a system can be called emergent with re-
spect to a formal definition could help argument for
a system-level explanation.

Of course, there is a certain circularity in this ar-
gumentation: Assuming that A (definition of emer-
gence) is true to prove that B (sytem shows emer-
gent properties), and then assuming that B to show
A makes a poor proof. The point, however, is not
really to prove anything; so this may be excusable.
The point of departure for me was rather that I
saw the term emergence appear frequently in (espe-
cially evolutionary -) linguistics and AL literature,
that I also knew it from philosophy, and that there
seemed to be a conflict between the two (or more..)
uses of the word. This has now been resolved so far
that as it has been shown how a definition used in
the AL context can be systematically connected to
its emergentist roots.

Many interesting aspects in this context were not
covered here and might be further examined: The
relation between “self-organization” and “emer-
gence”, for example. It seems to me that these
terms are often used synonymously. I think how-
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ever that although self-organization might actually
imply emergence, there are probably emergent phe-
nomena without self-organization. Seriously deal-
ing with this question would have required go-
ing deeper into the definition of self-organization,
which would have been nice but could not be done
here due to length and time restrictions.

7.2 Evolution of Language

Computational simulations of language evolution is
still a very young field. There still are many phe-
nomena in natural language that have never been
simulated. There will probably much forthcoming
work, especially as traditional linguists gradually
become convinced of the method. A major advan-
tage of these simulations is that factors of social
interaction and context can be integrated that are
hard to capture in former formal descriptions of
language processes. This is paralleled by develop-
ments in functional and cognitive lingustics:

“The recognition of [the foundational sta-
tus of the functions of language (semiolog-
ical and interactive function)] is the pri-
mary feature distinguishing functionalist
approaches to language from the formalist
tradition (notably generative grammar).”
– [Langacker, 1998].

One of the key arguments in favor of an innate sys-
tem for language aquisition is still that language
be too hard to learn without genetic predisposition
considering its complexity and the number of ex-
amples children typically observe before they have
learnt a language. Further work stressing the aid
social and contextual information gives might even-
tually lead to new models of language complexity
and especially humans’ potential to learn them.

Compositionality

Mechanism have been that described that produce
compositionality depending on the environment’s
structure.

The work on compositionality could be further
pursued with some changes on the system to make
compositionality more obvious. For example, the
rule creation might be somewhat dimmed so there
not so many low-scored rules cluttering the lex-
ica all the time. Also, one might take more

performance-based measure (measuring language
use, not the lexica) such that these mainly un-
used rules just do not show up; the behaviour in
the example where no compositionality did arise
was wholly holistic, but the measures used failed
to clearly express it.

Evolution of Grammar

The next step after dealing with lexical issues is
the evolution of grammar. As this thesis is be-
ing finished, a first public demonstration will be
given of a system by Luc Steels in which case gram-
mar evolves (using the FCG formalism described
above).

8 Acknowledgements

The major part of this thesis and basically all of the
implementation was written at the Sony Computer
Science Lab in Paris, providing a highly motivating
environment. I thank Angus McIntyre for helping
me out whenever LISP just seemed to fool me, with
neverending patience and humor.

I also thank everyone who helped with useful
comments and discussions regarding this thesis, no-
tably Anna Krusch, Jan Peters and my mother, and
Matthias Peter and Jennifer Sahm for not hesitat-
ing to drive for hours to provide me with hardware
in the hour of need.

References

[Alexander, 1920] Alexander, S. (1920). Space,
Time, and Deity. Macmillan, London.

[Brighton, 2002] Brighton, H. (2002). Composi-
tional syntax from cultural transmission. Arti-
ficial Life.

[Broad, 1925] Broad, C. D. (1925). The Mind and
its Place in Nature. Kegan Paul, London.

[Camazine et al., 2001] Camazine, S.,
Deneubourg, J., and Franks, N. (2001). Self-
organisation in biological systems. Princeton
university press.

[Cangelosi and Parisi, 1998] Cangelosi, A. and
Parisi, D. (1998). The emergence of a ’language’

42



in an evolving population of neural networks.
Connection Science, 10(2):83–97.

[Chalmers, 1996] Chalmers, D. J. (1996). The
Conscious Mind. Oxford University Press, Ox-
ford.

[Churchland, 1988] Churchland, P. S. (1988). Neu-
rophilosophy: Toward a Unified Science of the
Mind/Brain. MIT Press, Cambridge, MA.

[Clark, 1998] Clark, A. (1998). Being There :
Putting Brain, Body, and World Together Again.
The MIT Press.

[Dixon, 1997] Dixon, R. (1997). The Rise and Fall
of Languages. Cambridge University Press, Cam-
bridge, U.K.

[Kaplan, 2001] Kaplan, F. (2001). La naissance
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A Lexicon Overview Tables

Figure 17: Game ’lexical coherence’: first rules at run nr. 2

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.0 POWI 1.0 0.4 0.3 0.1

001 0.0 DA 1.0 0.4 0.1 0.3

010 0.0 GILCY 1.0 0.8 0.3 0.5

100 0.0 FIP 1.0 0.4 0.3 0.1

110 0.0 POGIDLUS 1.0 0.4 0.3 0.1

avg.h 0.0
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Figure 18: Game ’lexical coherence’: the sources of ambiguity at run nr. 3

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.0 POWI 1.0 0.4 0.3 0.1

001 1.0 ZOREP 0.5 0.4 0.1 0.3
DA 0.5 0.4 0.1 0.3

010 0.0 GILCY 1.0 0.8 0.3 0.5

011 0.0 VOV 1.0 0.4 0.1 0.3

100 0.0 FIP 1.0 0.7 0.1 0.3 0.3

110 0.0 POGIDLUS 1.0 0.4 0.3 0.1

avg.h 0.16

Figure 19: first lexical ambiguity inside an agent at run nr. 4

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.0 POWI 1.0 0.4 0.3 0.1

001 1.0 ZOREP 0.5 0.4 0.1 0.3
DA 0.5 0.4 0.1 0.3

010 0.0 GILCY 1.0 0.8 0.3 0.5

011 0.0 VOV 1.0 0.4 0.1 0.3

100 0.0 FIP 1.0 0.7 0.1 0.3 0.3

101 0.0 PIP 1.0 0.8 0.5 0.3

110 1.0 DU 0.5 0.4 0.3 0.1
POGIDLUS 0.5 0.4 0.3 0.1

avg.h 0.28
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Figure 20: first damping of an ambiguity at run nr. 5

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.0 POWI 1.0 0.4 0.3 0.1

001 1.0 ZOREP 0.5 0.4 0.1 0.3
DA 0.5 0.4 0.1 0.3

010 0.0 GILCY 1.0 0.8 0.3 0.5

011 0.0 VOV 1.0 0.4 0.1 0.3

100 0.0 FIP 1.0 1.4 0.3 0.1 0.3 0.7

101 0.0 PIP 1.0 0.8 0.5 0.3

110 0.92 DU 0.66 0.7 0.1 0.3 0.3
POGIDLUS 0.33 0.36 0.3 0.06

avg.h 0.27
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Figure 21: Game ’lexical coherence’: maximum entropy at run nr. 51

Meaning h Form % s Agents
0 1 2 3 4 5

000 1.25 POWI 0.56 3.41 0.1 0.3 0.7 1.0 1.0 0.3
ZIWUKE 0.36 2.18 1.0 0.18 1.0
FANE 0.06 0.4 0.3 0.1

001 1.77 DA 0.37 2.29 0.9 1.0 0.09 0.3
LUCGAGER 0.32 1.98 0.9 0.58 0.5
KETADI 0.25 1.56 0.06 0.3 0.1 1.0 0.1
ZOREP 0.04 0.3 0.3

010 0.91 NA 0.67 3.98 0.38 0.1 1.0 1.0 1.0 0.5
GILCY 0.32 1.95 0.7 0.7 0.06 0.5

011 1.23 DYNUPY 0.67 3.22 0.9 0.45 0.26 0.9 0.7
VOV 0.16 0.8 0.1 0.3 0.3 0.1
HE 0.15 0.76 0.5 0.26

100 1.28 FIP 0.65 3.97 0.53 0.3 1.0 1.0 0.13 1.0
LA 0.19 1.2 0.3 0.9
HORIMI 0.15 0.94 0.26 0.5 0.18

101 1.48 PIP 0.47 2.56 0.18 0.42 0.06 1.0 0.9
NOG 0.33 1.8 0.5 0.5 0.5 0.3
KAVSA 0.18 1.0 0.7 0.3

110 0.77 DU 0.77 3.76 1.0 0.7 0.06 1.0 1.0
POGIDLUS 0.22 1.1 0.3 0.7 0.1

111 1.47 GEBE 0.43 2.05 0.3 0.5 1.0 0.25
PE 0.41 1.95 0.3 0.7 0.1 0.15 0.7
KAFEC 0.15 0.76 0.1 0.1 0.06 0.5

avg.h 1.27
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Figure 22: Game ’lexical coherence’: favourites coming up at run nr. 400

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.8 POWI 0.75 5.1 0.1 1.0 1.0 1.0 1.0 1.0
FANE 0.24 1.67 1.0 0.49 0.18

001 0.99 KETADI 0.54 4.16 1.0 1.0 0.85 1.0 0.3
LUCGAGER 0.45 3.42 1.0 0.12 1.0 0.3 1.0

010 0.0 GILCY 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

011 0.38 DYNUPY 0.92 6.0 1.0 1.0 1.0 1.0 1.0 1.0
VOV 0.07 0.48 0.48

100 0.95 FIP 0.62 4.58 0.6 0.1 1.0 1.0 1.0 0.88
HORIMI 0.37 2.76 0.62 1.0 0.6 0.17 0.36

101 0.89 PIP 0.69 4.92 0.32 1.0 0.6 1.0 1.0 1.0
NOG 0.3 2.2 0.56 0.1 0.67 0.8 0.07

110 0.0 DU 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

111 1.06 KAFEC 0.52 4.45 1.0 0.6 1.0 1.0 0.67 0.17
PE 0.46 4.01 0.58 1.0 0.43 1.0 1.0
GEBE 0.0 0.07 0.07

avg.h 0.63
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Figure 23: Game ’lexical coherence’: first stability at run nr. 800

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.0 POWI 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

001 0.97 LUCGAGER 0.59 4.81 0.96 0.25 1.0 1.0 1.0 0.6
KETADI 0.4 3.28 0.21 1.0 0.78 0.67 0.6

010 0.0 GILCY 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

011 0.0 DYNUPY 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

100 0.07 FIP 0.99 6.0 1.0 1.0 1.0 1.0 1.0 1.0
HORIMI 0.0 0.05 0.05

101 0.0 PIP 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

110 0.0 DU 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

111 0.0 KAFEC 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

avg.h 0.13

Figure 24: Game ’lexical coherence’: the final lexicon at run nr. 1952

Meaning h Form % s Agents
0 1 2 3 4 5

000 0.0 POWI 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

001 0.0 KETADI 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

010 0.0 GILCY 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

011 0.0 DYNUPY 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

100 0.0 FIP 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

101 0.0 PIP 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

110 0.0 DU 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

111 0.0 KAFEC 1.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0

avg.h 0.0

50



Figure 25: Game ’environmental influence’: unstable rules after around 18000 runs

Meaning h Form % s Agents
0 1 2 3

335 0.89 BU 0.692 0.9 0.6 0.2 0.1
ZY 0.307 0.4 0.4

424 0.979 SAD 0.583 0.7 0.3 0.4
RE 0.416 0.5 0.5

445 0.954 MU 0.625 2.0 0.5 0.9 0.5 0.1
BIRO 0.375 1.2 0.2 0.3 0.1 0.6

525 0.0 SOVA 1.0 0.9 0.9

544 0.0 SY 1.0 2.699 0.5 0.7 0.9 0.6

625 0.965 RECPAZCIT 0.608 1.4 0.1 0.4 0.9
GU 0.391 0.9 0.8 0.1

626 1.509 WI 0.428 0.9 0.1 0.8
LUWEZ 0.38 0.8 0.8
HAGGE 0.19 0.4 0.4

644 0.0 GUF 1.0 0.8 0.8

735 1.553 WAS 0.38 0.8 0.5 0.3
MOW 0.38 0.8 0.1 0.3 0.4
TUK 0.238 0.5 0.5

736 0.65 VIL 0.833 2.5 0.8 0.8 0.9
WEGY 0.166 0.5 0.1 0.4
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Figure 26: Game ’Compositionality without environmental influence’: strong rules after 2100 runs

Meaning h Form % s Agents
0 1

001 0.0 hyflo 1.0 2.0 1.0 1.0

010 0.0 nuca 1.0 2.0 1.0 1.0

011 0.0 syb 1.0 2.0 1.0 1.0

100 0.0 ki 1.0 2.0 1.0 1.0

101 0.0 gi 1.0 2.0 1.0 1.0

110 0.0 zapy 1.0 2.0 1.0 1.0

111 0.0 mevdycduf 1.0 2.0 1.0 1.0

52



Figure 27: Game ’Compositionality with environmental influence’: strong rules after 2100 runs

Meaning h Form % s Agents
0 1

3x5 0.0 ry 1.0 2.0 1.0 1.0

434 0.0 ga 1.0 2.0 1.0 1.0

435 0.0 hozu 1.0 1.9 1.0 0.9

534 0.0 pyzvoz 1.0 2.0 1.0 1.0

535 0.0 buprec 1.0 2.0 1.0 1.0

536 0.0 kemi 1.0 2.0 1.0 1.0

5x5 0.918 vi 0.666 2.0 1.0 1.0
ru 0.333 1.0 1.0

634 0.0 manam 1.0 2.0 1.0 1.0

635 0.0 demif 1.0 2.0 1.0 1.0

636 0.0 rapeg 1.0 1.8 1.0 0.8

645 0.0 cug 1.0 1.9 1.0 0.9

x2x 0.924 cu 0.66 1.75 1.0 0.75
ruc 0.339 0.9 0.9
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