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Chapter 1

Overview

This documentis aboutthe RoboCupteamdevelopedby the OsnabrueckRoboCup
(ORCA) studentprojectat the University of Osnabrueck Apart from discussingour
conceptsve will try to give advicesregardingour programsandwill give areporton
our experiencewith theteam.

1.1 The developersand the project

Being a studentprojectat the University of Osnabrueck{ermaly, our groupconsists
of nine studentspnamelyAndreasG. Nie, AndresPggam,AngelikaHonemanngCollin
Rogawski, LeonhardHennig, Marco Diedrich, Philipp Higelmeyer, SeanButtinger,
andTimo Stefens. Also we hadtwo consulterson board: Prof. Dr. ClausRollinger,
andWilfried Teiken.

We startedout in October2000with a 1 yeartime period. During this time we
participatedin two tournamentsthe GermanChampionshign Paderborn,Germary
andthe World Championshipn Seattle USA. It might seema little confusingbut we
useddifferentnamesat thosetournaments During the GermanOpenwe participated
as'OsnaBallByters’ andfinally we wereknown as’Dirty Dozen’. Hencewe referto
ourteamdifferentlyin partsof thisdocument.

1.2 About this document

1.2.1 How this documentis organized

Following this chapteryou mayfind:

¢ CMU
the Carngie Mellon University (CMU) releasedheir codeof their 1999World
Championshipinning teamso that othergroupsmay useit andbasetheir de-
velopmenbntheir basicclient. Sincewe wantedto focuson strat@y realization
andonlinecoachingwve decidedo usethe CMU codeaswell. In this chaptemwve
describethe changesve made.

e Learning
While planingthe developmenbf ourclientit wasdecidedearlyon thatwe want



to uselearningmethodsto improve out teams skills. In this chapterare some
wordsaboutthelearningroutinesthatwe tried andwhy they didn’t work for us.

Playtree
Basedonthe CMU codewe chosea decisiontreeconcepto realizeour strateyy
conceptsThespecificsaboutthis methodaregivenin this chapter

Communication

Sincethe perceptve rangeof eachclientis limited communicatioris the means
to keepevery playeron thefield up to date. The chapterdescribesvhatis com-
municatedandhow it is donein ourteam.

Logfile Analyzer

The SoccerSerer producedodfiles for eachgamewhich canbe viewed after
wards. Thereis a large library of pastgameswhich give an excellentway to
analyzedifferentteams.Our tool to do this is the logfile analyzemwhich is de-
scribedin this chapter

Online Coach

Our online coachthat participatedn the 2001 CoachCompetitionin Seattleis
introducedin this chapter It explainshow it works and how interactionwith
clientsis realized.

SFLS

Whenthe playtreeconceptreachedits limitations we hadto comeup with a
new way of describingour stratgies. In the procesof doing sowe developed
the Strateyy FormalizationLanguageSystem(SFLS)which is presentedn this
chapter

Testing, Debugging, and Tuning

As alwayswhenalarge groupof programmersvorkson the samefiles thereare
boundto be conflicts. Somethoughtson thelong roadof developingandtesting
afunctionalteamaregivenin this chapter

Tourneys
Finally, we sharesomeof the experiencesve gatheredduring the participation
of thetwo tourneysin thelastchapter

Also we compiled an appendixin which we gatheredsomereferencematerial
mainly aboutSFLS.

1.2.2 How to readthis document

This documentvascreatedasthefinal reportof a one-yeaistudentprojectat the Insti-
tute of Cognitive Science OsnabrueckThe project-guidelineslemandhatit mustbe
possibleto determinewhich projectmembemwrote which sections.Thatis why there
is anassignmenfrom sectiongo names.

Thechapterareprettymuchself-containedSoyou canskip chapteror readthem
in any order

Thisdocumenwvill give adetaileddescriptionof ourteamsothatour generakcon-
ceptsmaybecomeclear In combinatiorwith our sourcecodeit shouldbe possibleto
try out own ideasandmaybebasea differentdevelopmenton our work.



1.3 ORCAs architecture

1.3.1 Generalinformation

As we developedour client naturallywe went throughsomechanges.The mostdra-
matic oneis probablythe introductionof SFLS (seeChapter8) to our client. In the
next chapterswve discusghedifferentconceptghoroughlysoright now we just give a
broadovervien on how thetwo approachediffer.

1.3.2 Playtree

The conceptof a playtreeis onethatis probablyusedby mostclientsin the RoboCup
SimulationLeaguetoday It is basicallyadecisiontreewhich allowedusto construct
functionalteamin ashorttime. Theteamusingthe playtreeparticipatedn the German
Openaswell asthe World Championshipn Seattleandis discussedn moredetailin

Chapterd.1
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Figurel.1: Playtreearchitecture

The flow of informationin the playtreeconceptis rathersimple: the messages
comingfrom the SoccerSerer are processed@nd storedin the World Model. Based
onthe currentworld stateour playtreecomponentiecidedon a certainaction. It does
sothrougha seriesof if-then constructs.Finally, the actionis translatednto a sener
conformformatandsendby the skill codemodule.

1.3.3 SFLS

With the developmentof a standardcoachlanguage(Clang) we discussedlifferent
approachesn how we could integratethosemessagemto our client. Throughthis



processve cameup with the Strateyy FormalizationLanguaggSFL) which is an ex-
tensionto Clangandwhichis realizedin the SFL Systendescribedn chapte8. Since

theteamthatusedSFLSunderstandtheClangit participatedn the20010nlineCoach
Competition.
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Figurel.2: SFLSarchitecture

Differentfrom the playtreeapproachhe client hasnow two sourcesof input. On
theonehandtherearethe directmessageffom the senerthatarestoredin the World
Model. On the otherhandarethe (occasionalmessagefrom our online coach. In
fact,it doesnt evenhaveto be ouronlinecoach sinceour clientworkswith ary online
coach.All themessagesom theonlinecoach(if available)arestoredn theRuleBase.
This Rule Baseis alreadyfilled with theteams own stratagic information. The online
coachmessagearethereforean additionto the given stratgyiesand are supposedo
improvetheplay of theteam.

Thecrucialcomponentf the SFLSarchitecturds the Matcher It takesthecurrent
rulesandmatcheghemwith the currentWorld Model. Basedon thatmatcharule is
chosenthroughsomeheuristicsby the Selector Whenarule is selectedt is handed
to the Effector This moduleinterpretsthe rule andconvertsit to the appropriateskill
whichis transferredo the sener astheclient’s actionfor it’s currentturn.



Chapter 2

CMU

2.1 Intr oduction

Thissectiorbriefly describesvhy we usethe CMU-Code[19. Youcangetthiscodere-
leasdrom http://www-2.cs.cmu.edu/afs/cs/usr/pstonegaio/Rob&up/CMUrited®-
sim.html. It bringswith it somebasicfeaturesyou canusewith your agentimplemen-
tation.

2.2 What isthe CMU Code?

It is the codethatthe teamof the Carngie Mellon Universityusedin RoboCup1999.
Not really thewholecode,but only thebasicpartsof it. It givesyoutheconnectvity to
theRoboCusener, aworld model,thatrepresenttheworld for theclient,abasictime
thread basicactionslik e kick the ball, go to the ball etc. andsomeexamplefunctions
for averylow level behaior.

You couldsay thatthe CMU codeis aframewvork thatwe usedto getaneasystart
to RoboCupandto focuson theinterestingpartsof RoboCup.Thisis quiteimportant,
becausenormally you would have to put quite a lot of effort into caringabouta con-
sistenttiming, client/sener-communicatioranda correctupdateof the world model,
whichwould keepyou from focusingon the Al-partsin RoboCup.

2.3 What problemsdoesthe CMU Codesolve ?

In the word modelall informationaboutthe ervironmentis stored. Every time cycle
you getinformationaboutwhatyou see,hearor sensewith your body, you storethis
informationto know whereyour opponentandyour teammategareandwheretheball
is. You alsogetsomeinternalinformationto calculateyour positionandyour stamina.
The problemis, that you get someof this informationwith noise,soyou don't know
the exact positionof everything. Anotherfeaturethe world modelhasis the ability to
keeptrackof how accurateheinformationin theworld modelis.

The CMU world modelprovidesa lot of functionsto checkthe stateof the world.
For examplethereis a functionto find an optimal positionfor interceptingthe ball or
to checkwhetherit is possibleto catchthe ball. While in RoboCupyou notonly have
to careaboutthe actualworld state,you alsohave to look into the future becausehe



world changesso fast, thatyou can't decidewhatto do on a fixed world model,you
also have to make assumptiongboutthe future world states. Part of this is already
donein the CMU world model.

Thecommunicatiorwith the seneris alsoveryimportant,sothatyou asa newbie
to RoboCupdon't have to careabouttiming problemsin theclient/sener communica-
tion or missingary senermessages.

Thetime threadtakescareof sendingthe messaget the sener andupdatingthe
world modelat the giventime. You canfind morepreciseinformationaboutthe steps
takenduringaworld modelupdaten atime cyclein the README file distributedwith
thecode.

The basicactionsarealsoquite importantwhenyou startwith RoboCup because
they do not simply performthe actionyou want to do by putting togetherthe basic
actions,that you can sendto the sener (kick, turn, dashand catchfor the goalie).
It alsocalculateghe correctvalueto be sendand checks,whethertheseactionsare
possible.

It alsocontainssomehelpfunctionsto calculategeometridiguresandpositionson
thefield. Also therearesomesampledor very low level behaior to checkout how to
usethecode.

2.4 Which problemsremainto be solved?

Although this “framework” solvesa lot of tasksin RoboCup,quite a lot things still
remainto be done. Thereis no communicatiorbetweenthe agents,so you have to
think abouttiming anda goodplanfor communication.

Thereis nohigh level planning,soyou haveto think aboutthebehaior in different
situations.You have to determinewhetheryou arein offenseor in defenseandhow to
behave in socalledstandardsituationsmeaningfor examplewhetherto go to the ball
andkick it in afreekick situation,run free or do somethingelse.

Thereareno classedor positioningandformation,which arequite important,be-
causetactical behaior in a game(e.g. good positioning, playing with off-side calls
etc.) is animportantskill in playinggoodRoboCupsoccer You have to think abouta
situation-dependenpositioning.

2.5 Adapting the codeto the current Server Version

Sincethereleasenf the codesomethingswerechangedn the SoccerSersr. You can
find alist of all changedo the SoccerSenerin the CHANGESfile deliveredwith the
SoccerSener sources.Our client was adaptedo the SoccerSener 7.10, so further
changesrenotin thecodebase.The majorchangesve hadto careaboutare:

e Heterogenousglayers- Before eachgame,the sener creates differentplayer
typeswith differentabilities in speed kick range,kick power, precisenessf
kick, staminaetc.. You have to find out the correctplayertype of eachopponent
and store eachteammategplayer type to make assumptionsaboutthe future.
Sincethereis a hugeamountof informationinput, we do not useall information
sendto ushy thesener.

e SenerCommunication Therewheresomechangesn senermessageshathad
to be parsediifferently. Therealsosomenen messageghathave notbeensend



by earlierversionsof the SoccerSener.

e The StandardCoachLanguaggClang)- Since2001thereis a StandardCoach
Languagethatcanbeusedby Online Coaches.

e Time Threading- Eventhoughnot mentionedn the CHANGESfile explicitly,
following the heterogenousplayer messagestherewere somechangesn the
communicatiorbetweerclientandsener.

e ParameteNalues- Somedefault valueschangedandtook an influenceon the
skills. For example the optimalkick wastotally changed.You have to kick only
with full powerin theright directingto getthe optimal acceleratiorof the ball,
while usingearlierSener Versionsyou hadto kick the ball aroundyou to getan
optimalacceleration.This of courseleadsto a totally differentoptimal passing
andgoalkicking skill.

In orderto make futureimplementationsf heterogenouglayerspossibleve added
an array of playertypesto storethe differentplayertypes. Also for eachplayerwe
could storewhich playertypeit actuallyis. Sinceour online coachdoesnt make ary
playersubstitutionandno guessesboutthe opponentplayertypes,which shouldbe
doneby thecoach becauséehasdatawhich hasnonoiseaddedo it by thesener, we
did notcheckouthow goodouradaptiorof heterogeneouyslayersis. We only checled
whetherthe systemworksat all with heterogenouplayertypes.

Quite a lot of thesevaluesare usedin the functionsthat make predictionsof the
world’s future,for examplewhois first to theball. To nothaveto changehewholeac-
cesgotheworld model,we assumedhatevery playeris of thesameplayertypeasour
own playerwhich is somethingof a hackandratherrudimental.Still, this works quite
well in mostsituations but canundersomecircumstanceteadto misinterpretatiorof
theworld state.

To actuallyuseour codewith heterogenouplayersyou have to make changego
the world modelandto the skills. You have to write a wrapperclass,throughwhich
you getaccesso thevaluesof thedifferentplayersandyou have to write amodulethat
makesassumptionsiboutwhich playeris which playertypejustin caseyour coachis
nottelling you andyou alsohave to addthis to thecommunicatiorprocess.

We hada problemwith the timing andthe client/sener communication.We are
not surewhetherit wasa problemof the UDP-protocolor whetherit wasa bugin the
RoboCup-sersr, but we did not get message# the right order Our problemwas
thatwe did not gettheinit) =~ messageasthefirst responsdrom the sener (not all
thetime). Sowe hadto storethe messageandbring themin theright orderto avoid
missingary initial messageBecaus&JDP doesnotcarewhetheryouactuallyrecevea
messageyou haveto careaboutyour messagstackin your client. We useda dequeue
for theimplementationwhichis a containerclassof the STL of C++.

Thecodeexample(netif.C ) canbefoundin appendixE.

At first we tried to learnthe new skills which shouldhave givenusa betterperfor
mancehanthe CMU skills. TheCMU skills arenotthatbad,but they canbeimproved.
You canfind moreaboutour learningapproache the next chapter Unfortunately
we ran out of time and didn’t have the time to improve the skills by hand. This is
certainlyataskthatremainsto bedone.
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Chapter 3

Learning

3.1 Motivation

In former competitionsof RoboCuptherehave beensereral approacheso apply ma-
chinelearningtechniquedo the RoboCupdomain. Most teamsin the competitionin
2000in Melbournefocusedon improving the low level skills with help of machine
learningtechniquesOneexampleis theteamKarlsruheBrainstormers[1pwhoselow
level skills have all beenlearnedusingreinforcementearning.ln comparisorto other
teamsthisteamhadsignificantlybetterball handlingandinterceptiorskills. Theteam
wasableto getto theball about10 percenfasterandthey playedtheball with a higher
accuray thanteamswhich usedthe un-tunedhand-codedkills from the freely avail-
ableCMU sourcecode.Thisresultedn muchlessball lossesvhenplayingpassesSo
we decidedo focuson robustlow level skills first to build a stablebasisfor our higher
level skills.

Anothermotivationfor the useof machinelearningtechniquesvasour interestin
thefield of new Al, suchasartificial life, evolutionarycomputationgeneticalgorithms
andneuralnetworks. We hadminimal experiencesn implementingandexperimenting
with suchsystemsandwe wantedto improve our skills andgetthe experienceneeded
to successfullyapplythesetechniques.

3.2 Problem Structure

As alreadymentionedyve focusednimproving thelow level skills. Thefirst two basic
skillsweneededveregoto-ball  andkick-ball . Thegoalstatefor thegoto-ballskill

is simply to getinto a positionthatallows controlling the ball. For the kick-ball skill

the goal stateis definedasa situation,in which the ball leavesthe kickable area(the
areawheretheball is controllablefor a player)in a givenangleat a specifiedvelocity.

Thesetwo simpletasksare prototypesof mostproblemsthata playerhasto dealwith

in RoboCup. The playerhasto find actionswhich, from a given situation,leadto a
situationwhich satisfiesthe constraintsgiven by the goal statedefinition. Thusthe
learningalgorithmhasto mapsituationsto actions.

11



3.3 Potential Learning Methods

Our objective wasto find a machinelearningapproacithatis ableto map situations
to actionswith minimal knowledgeof the world. Our planwasto specifygoal state
andsituationinformationtogethemith a setof possibleactions. Thelearningsystem
shouldthenbe ableto find a solutionto the problemwith this knowledgeonly. We

providedthe systemwith minimal knowledgein orderto avoid influencingthe process
of finding the optimal solution. This way the systemshouldbe ableto find solutions
we didn’t think of before. This constrainforcedusto excludeall supervisedearning
methods.Consultingthe literatureleft uswith threedifferentlearningmethodswhich

wereableto solve problemswith very little information[7].

e ClassifierSystems
e EvolutionarySystemsaandGeneticAlgorithms
¢ Reinforcementearning

It is commonto all threeof theselearningmethodghatthey merelyneeda reinforce-
mentsignal. Thereinforcemensignalis generatedy the ervironmentbasedon how
goodthetaskis solved. In our casethe definition of goodcould be, how mary steps
were neededo get from the startingsituationto the goal state. Individuals able to
solve thetaskin lessstepsreceive a morepositive reinforcemensignalthanindividu-
alsneedingmoresteps.

Classifiersystem®perateon a setof rules. Theserulesconsistof two parts,acon-
dition partandanactionpart. If the conditionpartis satisfiedby a stimuluspresented
to the system(e.g. the situationdescription),the actionpartis executed. The action
partmay activatean actiondirectly or sendanotherstimulusinto the systemby which
otherrulesareactivated.lt is possiblefor morethanoneruleto beactivatedin onetime
step.By alwaysselectingthefirst rule thatis activeit is notguaranteethatthisruleis
thebestrule possible Herea smarterselectionrmechanisnhasto befound. A module
is introducedto assignafitnessvalueto eachrule. Thefithessvalueis estimatecbver
time. Every time a rule is activated,a small amountof the fithessvalueis “paid” to
the module. After a goal statehasbeenreached every rule involvedin solving the
taskis rewardedrelative to how mary stepsarestill neededafter executionof therule.
Thisway rulesleadingdirectly to a goal stategeta higheramountof fitnessthanrules
executedat the startof anactionsequenceBy assigninga fithessvalueto eachrule,
theselectiormechanisnbecomewery simple: If morethanoneruleis active,therule
with the highestfitnessis executed.A rule setwhich is ableto solve a giventask, is
generatedby introducingnew rulesusingarule discovery module,interactingwith the
ervironmentandassigningthe fitnessvalues. In a classifiersystemevery rule hasto
be evaluatedoncein every time stepandtherule setis notlimited in any way. There-
fore it cannotbe guaranteedhatthe systemis ableto reactin a fixed amountof time.
Successfubpplicationof the learnedskills in a gamelike RoboCupis dependenbn
in-time reaction,in our case100ms. That's why we decidedto useanothermachine
learningtechniquefor learningthe skills. A methodwith afixedresponsdime would
bedesirable.

As mentionedabore, anothermethodto achiese the mappingfrom situationsto
actionsis EvolutionaryComputatiorandGeneticProgrammingThis methodis agen-
eral optimizationtechnique soit canbe usedto optimizethe weightsof a neuralnet
thatchooseghe appropriateactionin a specificsituation. In this approachthe neural

12



netis codedasavector, calledchromosomeEachinformationcodingunit onthechro-
mosomads calledagene.Fromrandomlyinitialized chromosomeghefirst population
of neuralnetsis “grown”. In the next step,the netsaretestedon how well they solve
agivenproblem.With thisinformation,the reproductiorprobabilityis calculatedjn a
way thatanindividual thatperformswell hasa high reproductiorprobability andoth-
ershave alower probability. After that,the offspringis generatedThe chromosomes
of two individualsarerecombinedandperhapsomeof the geneanutatedo form two
new individualswhosechromosomethenconsistof genesrom eachof the parentin-
dividuals,possiblymutated.Now the new populationis testedagain,the reproduction
probabilitiesare calculatedandso on. After somegenerationsthe individuals’ chro-
mosomesshouldconverge andthe producedneuralnetsshouldbe ableto predictthe
actionscorrectly

Thelastmethodwe consideredisanalternatve is TemporalDifferencelearning.
In this Reinforcement.earningapproachafunctionapproximatoiis trained,in away
thatenablest to predictthe exactlengthof the pathto the next goal state,given ary
situation. This is doneby training, for examplea feed-forward neuralnetwork with
back-propagationwhoseinputis thedescriptionof the currentstate andwhoseoutput
is one value that representshe stepsneededo reacha goal stateasa sumof fixed
perstep-costsThe net's weightsareinitialized randomly Thenthe netis trainedwith
thefollowing equation,

Qs a) = Q(s,a) + a1 + YMinaQ(S+1,a+1) — Q(S, &)]

wherea is the learningrate andy is a discountfactor Q(s,a) arethe predicted
resultingcostsfrom the situations with the actiona; to a goal state. Analogically
MinaQ(s+1,a+1) arethe minimal expectedcostsfrom onetime stepin the future. In
otherwords,theactiona;, 1 is the bestactionin thesituations. ;. If the states1 is
a goal statethereare no further costswhereasn a failure statethe costsareinfinite.
In this approaclithe differencesn time areusedto train the function approximatoito
predictthe remainingcostsfor reachingthe goal. Temporaldifferencelearninghas
successfullypeenusedto solve complex continuousanddiscreteproblemsin various
domains Additionally, we hadthechancedo askMartin Riedmillerfor experiencesand
problemsin temporaldifferencelearningbecauséne held a seminaraboutintelligent
robotcontrolling,includingreinforcementearning,at our university Thuswe decided
to usetemporaldifferencdearningto learnthelow level skills.

3.4 Temporal DifferencelLearning

In this sectionwe describethe TemporalDifferenceLearningmethodin moredetail.
Thesimplestapproachn learningfrom temporaldifferencess Q-Learningdeveloped
by RichardS. Sutton[20]. It is a derivateof valueiteration,known from the dynamic
programmingdomain. Valueiterationis a table basedapproach.For every possible
situationin theworld, thereis oneentryin thetable. In thebeginning,thetableentries
areall zero.Thenthetableis updatedavery time-stepwith thefollowing equation:

Vir1(s) = mingE{re 1 + Wi(s+1)|s = s,& = a}

for all S, whereSis the setof all possiblesituations. The value of the states after
one iteration (k+1) is the costfor a statetransition plus the minimal expectedcost
for theresultingstate,with goal stateshaving no future costandfailure stateshaving
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infinite cost. Theupdatingprocesss guaranteedb corvergeaftertheupdatingprocess
hasusedevery actionin every state. It becomesbvious, that value iteration is not

tractablen alarge statespacewith ahugeamountof possibleactionsbecaus¢hetable

grows proportionalto the sizeof state-actiorpairs.

Let's stepbackto Q-Learningwith a parameterizedunction approximator The
objective of this approachs to geta compactrepresentationf the valuefunctione.g.
aneuralnetwork andto utilize thegeneralizatiorof thefunctionapproximatofor con-
tinuouslearningtasks[21]. The first variantwe startedwith is the simplestvariant
of Q-Learningthatrequireda completemodelof theworld J * (s,a") whichis a func-
tion thatmapsa situationandan actiononto a situationreachedy usingactiona’ in
situations. Theequationto calculatethe Q-valuefor a stateis:

Q(s) =r(s,d) + minyQ(J*(s,a))

The Q-valueof asituationrepresentthe costarisingontheway to agoalstate.r(s,a)
arethecostfor eachstatetransition,in ourapproachye assignedhe samecostto each
action. In otherdomains,it might be possiblethat someactionsproducehighercost
thanotheractions. In our caseall actionsaretreatedequally Thetraining procedure
for thisfirst approachn pseudo-codéokslik e this:

create set of training-situation s S
while  Q(x) didn't  converge
{
choose training  situation s randomly
while (s != goal state)
{

for all actions a
{
calculate s’ = J{*}(s,a)
calculate  Q(s)
}
select action a that produces minimal cost
update Q(s) with Q(s) =r + min_{a} Q(J*s,a))
s = J¥s,a)
}
}

As mentionedabore, oneof our learningtaskswasto reachthe moving ball in minimal
time. We tried to train a feed-forward neuralnetwork to find the correctactionin
eachsituation presentedo the network asinput. Sincethe coding of the situation
for the neuralnetwork seriouslyinfluencesthe possibility for the network to find the
correctparametersor approximatinghe valuefunction, we adoptedthe codingfrom
the KarlsruheBrainstormersyho releasedheir sourcecodeto provide analternatve
basisfor starteran RoboCup We recognizedhatwith this simpleapproachheresults
were not satisfying. The neuralnetwork obviously learnedin the first episodesput
then the learning processdidn’t improve the action selectionary more. We found
out that the explorationresultingfrom the weight changesvasnt broadenoughfor
learningthistask. After insertingane-greedyactionselectiorthelearningperformance
increasedput the behaior wasonly suboptimal. In somesituationsthe net selected
actionsthat resultedin a similar situationand not in a bettersituation. Even more
training episodedidn’t improve the performance.In fact, this causedthe function
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approximatorto decreasén performance.We found mary articleswhich dealtwith
the problemsof combininga parameterizedunction approximatorwith Q-learning.
Most authorsmentionedhatif functionapproximationn Q-learningis achiezedwith
a neuralnetinsteadof a lookup-table,corvergenceto a global optimumis possible
only by chance Someof the articlesprovidedalternatvesto Q-learningwhoseresults
shouldbemorereliable.

3.5 Grow Support

Oneof thepromisingmethodsvasGrow Supportdevelopedby JustinA. Boyan[3]. In
his paperhepointsoutthataniterative procesdik e valueiterationin combinationwith
a generalfunction approximatorcanleadto diverging results. He presentsa method
thatheavily makesuseof thegeneralizatiorof the approximatoyinsteadof forcing the
approximatorto changethe parameterso directly fit the one-stepupdatesestimated
by an iterative process. That way the value function should be approximatedmore
reliably.

Boyan’s methodis basedon rollouts ratherthan one stepupdates.Theserollouts
are costsof paths,generatedy following the greedypolicy given by the function
approximator If the greedypolicy, from a given starting situation, reachesa goal
statethe estimatedtostsarereturned.If the greedypolicy doesnt leadto a goalstate
aftera givenstep-countjnfinity is returned.Thus,the correctcostfor the stateor the
misleadingof thecurrentpolicy is returnedIf agoalstatehasbeenreachedthestarting
situationtogethemwith thecostcouldbeaddedo aset,calledsupport-setonwhichthe
approximatoiis trained.Giventhis idea,therestis straightforvard. A setof situations
X, sampledrom the continuousstatespacejs definedandinitially, the support-sets
empty Next, the function approximatoris trainedon the support-set. Thenif there
arestatedeft in X andthe support-setidn’t stopgrowing, rollouts are performedfor
every xeX atime. If arollout was successfulthe situation-costpair is addedto the
support-setThe generalizatiorof the approximatooptimally causesnary successful
rolloutsin onetraining episodeby generalizingover a region of the statespace.If all
xeX areprocessedhe procedureestartawith retrainingthe functionapproximator If
the support-sestoppedyrowing, or all previously sampledsituationshave beenadded,
the approximatorhascornverged and the value function hasbeenapproximated.To
male this clearer:Hereis the main proceduran pseudo-codegiventhe support-set
SUPPORTthe setof sampledhointsX andtheapproximatofFIT :

X ;= points sampled over the state space
SUPPORT:= {}
repeat
{
train  FIT to approximate SUPPORT
for each state xi in X
{
¢ = argmin(@) [ COST(xi,a) + RolloutCost(NextSta te( xi, a),
FIT)]
if ¢ is not infinite
add <xic> to the training  set SUPPORT

}
} untl  SUPPORTstops growing or all point in X were added to
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the support set

After implementingthis method,we trainedit on the task of going to the ball,
asdescribedabove in the context of temporaldifferencelearning. In our case,the
training procedurensertedonly a few pointsto the supportset,andterminatedaftera
shortlearningphase We thentestecthis approactwith largerneuralnets,becauseve
thought thenetusedin thefirst runwasnt ableto fit thetrainingdata,dueto it’s small
hiddenlayersize. Sincethetrainingrunswith largernetshaven’t shovn amuchbetter
performancewe droppecdhis approactandimplementedanotherone.

3.6 ROUT

The next methodof approximatingthe value function was the enhancedrersion of

grow-supportROUT[4]. Boyandevelopedthis methodonthebasisof thegrow-support
algorithm,to eliminatethenegative propertiesof grov-support.Oneof theseunwanted
propertieswas, thatin very large statespacesthe algorithm neededa lot of sample
pointswhich, oneafteranotherwereinsertedin the support-setSo, trainingin large

state-spacemok muchtime, evenif the problemwasvery simpleto approximates.g

with only a few of the pointsin the support-set. That's wherethis methodfocuses.
Insteadof usingthe generalizatiorcapability of the function approximatorto addas
mary samplepointsaspossiblethe generalizations usedto find pointsin thatregion

of the statespace,wherethe generalizatiorstartsto fail. Thenfor thesepointsthe

correctvalueswereestimatedandthe training samplesvereaddedto thetraining set.
With this techniquepnly thosetraining samplesvereaddedwhich arelocatedon the

frontierof regionswheretheapproximatopredictscorrectvaluesandregions,in which

the approximatormpredictsincorrectvalues. That keepsthe training setas compactas
possible And in asuccessfutun, theregionsof correctvaluepredictiongrow from the

goalbackwards.Giventhe startingpointsX thetraining setSUPPORandthe randomly
initialized functionapproximatofFIT , thelearningprocedurdookslik e this

SUPPORT= {}
repeat
{
for each state xi in X do
{
s = HuntFontierState(x, FIT)

add training  sample <s, one_step backup(s)> to SUPPORT
retrain ~ FIT to fit SUPPORT
if s ==xi then mark xi as “done”

}

} until  all start states are marked as “done”

Theone-step-backupeferredto in the pseudo-codés simply afixed perstepcostplus
the expectedminimal cost. The procedureHuntFrontierStatdriefly describedabove
in pseudo-codegiventhe currentstatex:

for each legal action a do

{

repeat up to H time

{
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generate  trajectory T from x to termination, starting  with
action a let y be the last state on T with Bellman

residual > epsilon if y not empty and y != x, break out of
loops and restart  with HuntFrontierState(y, FIT)

}
}

Il reaching this point, the subtree of x is deemed selfconsistent
/I and correct
return  X;

Even in this enhancedrersion, the training didn’t succeed. After somesuccessful
episodesthe greedypolicy didn't lead to goal statesarnymore, with the result that
only asmallregionin the statespacevasapproximatectorrectlyandin otherregions
of the statespacethe approximatompredictedmisleadingvalues.In the paper Boyan
only mentionedhe problem thatif the approximatoiis not capableof fitting thevalue
function, the supportsetgrows constantlywithout growing the supportregion back-
wardsfrom thegoal.

3.7 Results

Sincewe re-implementedur learningmethodevery time we realizedthat the task
wasnt solvedsufficiently, we didn’t spendenoughtimein collectingdataandanalyzing
it. Looking backwards,it would have beenbetterto analyzethe problemsin detail
to get a deeperinsight what kind of problemsoccurredin approximatingthe value
functionin the differentapproachesThenwe possiblywould have beenableto solve
theseproblemswith help of literature. The way we worked wasmore or lessa trial
anderrorsearchfor a methodthatlearnsthe neededskills without ary problems.One
reasonfor that wasthat we didn't expect, thatimplementingand using that type of
learningrequiresa lot of experience.The lessexperiencethereis available,the more
time is neededo gain that experience.In our time plan we includedone and a half
month for implementingand training the skills for our team. That definitely wasa
phasetoo short,becausefter we realizedthat we won't geta stablelearningsystem
or perfectlylearnedskills within that period, we startedto implementothertraining
scenariosand even searchedther methodsto solve the given tasks,whereprobably
otherkinds of problemsoccurred.

3.8 Further Work

Furtherwork in thisdomainshouldincludethetopic mentionedn the previoussection.
Theoccurringproblemshave to beidentifiedby analyzingthedatacollectedduringthe
learningprocessAn excellentbookin which varioustechniquedor analyzingdataare
describedn is [10]. Oneaim would be to use otherfunction approximatorswhich

have beenstudiedin moredetailandusedsuccessfullyn abroaderfield. Oneexample
wouldbealinearfunctionapproximatothathasbeenusedin variousrobotictasksthe
CMAC. Tsitsiklis [22] mentionsin his paperthatnonlinearfunctionapproximatorsn

combinationwith temporaldifferencdearningleadto diverging resultswhereadinear
approximatorgorvergeto anoptimalsolution.

Anotherinterestingdomainin reinforcementearningis the applicationof evolu-
tionary computingand geneticalgorithmsto sequentiareinforcementearningtasks.
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Therearemary new promisingapproache evolving neuralcontrollersthatfind so-
lutionsmorereliablethanthetemporaldifferenceapproach.
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Chapter 4

Playtree

4.1 Intr oduction

Ourfirstapproactto realizingtheagents'decisionmakingmodulewasto implementa
handcodediecision-tree-like structurethe "playtree”, in orderto have arunningteam
of reactive agentsas soonas possible. The stepwiserefinementof the basicagents’
behaior promisedto be a goodway towardsgetting a deeperunderstandingf what
makesa goodRoboCupagent.

A decisiontreeis a setof rulesrepresentedn a tree-structure.Nodesrepresent
guestionsor conditions,queryinga particularset of data(the input), while branches
leadingto nodesonthenext level arelabelledwith answerdo thoseguestions Starting
attheroot nodeandansweringeachnodes questionsalongthe way, the traversionof
the tree eventuallyreaches final node. Final nodes(leaves)are not labelledwith a
guestionbut with avalueor actionthatis regardedasthe systems output.

In theplaytree theinputconsistof thecurrentstateof theworld modelandinternal
statevariableswhile the outputis givenin theform of actioncommandsi.e. callsto
highlevel skill functions.In addition,theagentsinternalstatesnaybealteredat every
pointin thetree's traversion,e.g. to avoid the repeateddvaluationof time consuming
gueriesto the world modelor to realizethe executionof simpleplansin the form of
shortaction-sequenceshoseexecutiontakesmorethanonesimulationstep.

Theplaytreeis implementedn theform of C-functionsthatcorrespondo its sub-
treesandconsistof conditionals(if...else, switch ) whoseconditionsarecallsto
world modelfunctionsandwhoseactionsarecallsto othersubtree-functionsr, onthe
lowestlevel, callsto high level skill functions.

Eachplayerhasits own copy of the playtreeandin every sener cycle (simulation
step)callsthe main playtree-functionwhich leadsto a situation-specificraversionof
the playtreeandeventuallyresultsin the executionof the respectie actioncommand.
Thus,the playersarereactve agentsj.e. mostof thetime they only chooseoneaction
to be executedduring the currentcycle on the basisof the currentstateof the world
insteadof pursuingary explicit goalsandplanningaction-sequences reachthem.

Due to the goal that eachplayer should be able to take over eachpossiblerole
whenit is required thereis only oneversionof the playtreefor all players.All players
exceptthegoalkeeperwho hasanown goalie-subtreetheoreticallypehaein thesame
way whenthey encounterthe samesituation. The only aspectdn which two given
fieldplayeragentsdiffer aretheir internal statesandtheir ervironmentswhich trigger
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thechoiceof a particularaction.

Theideabehindthis designwasto build the agents’behaior in a bottom-upfash-
ion, startingwith roughdistinctionslik e the currentplaymodeor whetherthe agent
is in ball possessiorandchoosingsimplebehaiors like gettingthe ball or kicking it
in a certaindirectionandthenrefining the behavior stepby stepby replacingcalls to
moregenerabehaiorswith moredetailedqueriesaboutthe stateof theworld andthe
respectie, more specializedactions,leadingto a treethatis growing, i.e. branching
out moreandmore,with our growing experiencesandskills in formalizingthe needed
knowledgeaboutthe domain. In thetime neededo identify the crucial situationsoc-
curringin agameandto formalizethe appropriateconditions,the requiredhigh level
skills canbe developedby a combinationof lower level skills or by meansof machine
learning.

Apartfrom its extensibility, the playtreehasthe advantagehatits modularityfacil-
itatesthe independendevelopmentof differentsubtrees.Thatway, differentpartsof
thebehaior canbeimplementedndependentlandlaterbe adjustedo work together

Thefigure below shavs the roughstructureof the playtree thefollowing sections
of this chaptertake a closerlook atit, startingwith the partthatimplementghefield-
players’behaior andthenexplainingthe partthatspecifieghe goalkeepers behaior.

no

play_on

offense or
defense?

goalie
tree

defense, offense

got ball?

fastest
o to ball?

opponent.
get ball o mark?
mark at
opponent homepos?

play_with\
hall_tree

Figure4.1: A roughsketchof theplaytree.
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4.2 Formations

As the conceptof formations,i.e. the mechanisnfor the strateic positioningof the
playerson the pitch, is importantfor the understandin@f the detaileddescriptionof
the inner workings of the Playtreethat follows in the next section,it will be briefly
explainedin this section.

Onesolutionto the problemof the team-widestrateical positioningof the players
wouldbeto let eachagentdeterminea stratgically optimalpositionin everyactioncy-
cle,takinginto accounthecurrentgamesituation theteams strategy andthepositions
of theirteammategprobablyusingcommunicatiorto negotiatewith them.

Thissolutionhasthedisadwantagehatit is rathercomplicatecandthuserrorprone,
andthatit consumepreciousCPUtime.

In real soccerexplicitly agreedormationsareusedfor the strat@ical positioning
of the players,telling themwhereaboutto positionthemselesduring certainphases
of the game,e.g. defensie or offensive play in eithertheir own or the opponents’
half. Formationsgive the teamthe ability to quickly reactasa whole on changesn
the game,provided that eachplayerknows his positionin the currentformationand
whichformationto switchto in a givensituation. Theplayersonly have to adjusttheir
currentpositionsaccordingto their role in the currentformationinsteadof reasoning
abouttheir stratgically bestpositionsall thetime.

Anotheradwantageof using formationsis the fact that expert soccerknowledge
canbeeasilyformalizedby specifyinga setof formationsandtheruleswhento apply
which.

We implementedhe conceptof formationsby providing formationdatasharedoy
all the agentscombinedwith a mechanisnfor switchingthe currentformationanda
behaior thatmakesintenseuseof the positioningdatafoundin it. To enableheagents
to sharethe samesetof data,it is, in theform of formationrecordswhosestructureis
describedbelow, externally storedin a configurationfile which is readby eachagent
atthebeginningof its lifetime andwhich hasa syntaxthatfacilitateseditingformation
data.

A formationrecordsimply consistof aformation-identifiethatuniquelyidentifies
theformation,andtenpositioningrecordspnefor eachplayeror rolein theformation.

Apart from a position-identifiey positioningrecordshave threeattributes,asillus-
tratedin thefigure4.2 on page22:

HonePosi t i on is apoint onthe pitch thatthe agentregardsasits default position
andasa startingpoint for its individual positioning,which is basedon thelocal
situation.

HoneRange istheradiusof acircle aroundthe HomePosition.

MaxRange istheradiusof abiggercirclearoundtheHomePositionHomeRangand
MaxRangeepresenhorizonsfor someof theagents perceptiongandactions.

This more centralizedway of building formationsonly works if the mechanism
for choosingthe currentformationis the samefor eachplayerandis only dependent
onglobalinformation,i.e. informationthatis accessibléo eachplayer To achievethis,
theskill setsareextendedoy set _current _position(formation _id,position  _id) ,
anactioncommandvhich causesheagentto setits currentinternalpositioningdatato
the datafoundin the respectie positioningrecordin the respectie formationrecord.
At this stageof developmenttheposition _id is simply the agents uniform number

21



=

osna_Bal IByters: free_kick_| 1944

Figure4.2: Formationdata(shavn for oneplayeronly).

sothatthe only thing the agentneeddo know is thecurrentformation _id . Whenthe

global situationof the gamechangege.g. a switch from defensve to offensive play

takesplace),certainrulesin the playtreethatonly dependn globally accessiblénfor-

mationtell theagentgo executetheappropriateset _current _position() -command.
As this informationis the samefor all the players,this resultsin ateam-widechange
of the currentformation.

Apart from the advantagesnentionedabore, team-wideformationknowledgeof-
fers more opportunities. Formationsgive the online coachthe power to stratgically
interveneby simply switchingthe currentformationaccordingto globalinformation
abouttheopponentspositionsor strateyy.

Or the agentscan, for example,adjusttheir currentHomePositions  accordingto
the ball's position, so that the whole team automaticallyfollows the ball while still
building a formation. The resultingHomePosition s sene asa startingpoint for the
agents’own local decisionwhereto positionthemseleswithin their HomeRange or
MaxRange.

4.3 Strategy

To simulatea real world of soccerwe have tried to take over somestratgiesfor our
agentsThemainthingis theseparatiometweertheplayin theoffensiveanddefensve
play modes. An offensive play mode meansthat our teamcontrolsthe ball and by
contrastdefensas the situationwheneerthe opposingteampossessethe ball.

For the differentstrategiesin thesetwo situationswe alsohave to try to realizeall
our knowledgeabouttherealsoccerthroughour agents.

Thefirst partof this sectiondealswith our agents behaior duringthetwo partsof
theoffensive play mode.Thereis a descriptionaboutthe differentdecisiongheagents
male. After thatthe mainactionsof our offenseis explainedin detail. The next part
illuminatesour agents behavior andits main optionsduringthe defensve play mode.
Furthermorethe detailsof the main actionsof our defenses given. Thenthereis a
suney of the behaior whenthe teamis in the kick-off situations. This chapterends
with a conclusionaboutthe problemswhich we had during the developmentof our
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team.

4.3.1 Offense

This situationis divided into two partswhich describethe differentbehaior of the
agent. The first containsthe tasksfor the agentwhich doesnt have the ball andthe
seconcbneshavstheplay of theballovner.

Agent Without Ball

The behaior of the agentdepend®n threemain decisions.Thefirst option checksif
theagentis choserasthe ballrecever aftera pass.In this casehe goesto the position
wheretheball is expectedandtriesto getit. Theinformationaboutthe estimatedo-
sition of the ball andthe uniform numberof the ballrecever arecommunicatedy the
ballpossessorThereforethe playerwill know thathe will bethe passpartnerSome-
timesthe messagebetweerthe playersarelost sononeof the agentgake therespon-
sibility for the pass.Thereis analternatve wherethefastesagentgoesto the ball and
triesto getit. If thesituationof the agentis suchthatneitherof thetwo precedingde-
cisionsfit hemovesto a positionto avoid theopponentsn orderto give the possibility
for apass.

Get Ball

Our agentusesthe procedureget _ball)  from the CMU-Codeto getthe ball. The
criterionwhich actionis executeds the movementof theball.

If the ball movesthenthe agenttriesto interceptthe ball. A functioncomputesa
pointonthewaywheretheball will beandtheagentwill goto thatposition.Otherwise
if the ball doesnt movetheagentwill go to the positionwherethe ball lies.

FreeRun

Which positionthe agentwill move to in orderto avoid the opponentss determined
by an evaluationof differentpositions.A function getFreeRunPos(...) checksthe
numberof opponentsvhichareontheway from thecomputedositionsto the position
of the ball. The agentgoesto the positionwith fewestopponentdecausehis will be
thebestpositionwherethe ballpossessaranpassthe ball to.

The evaluationconsiderseight possiblepositionswherethe agentcango to. The
positionis a pointwhichis

e ontheendof thecircle of the homerangef theagent.

e betweerthehomepositiorof the agentandthe positionof the ball.

¢ betweerthehomepositiorof the agentandthe goal of theopponent.
¢ thehomepositiorof theagent.

¢ thecurrentpositionof theagent.

e onemeterfrom thecurrentpositionof theagent.

e betweerthecurrentpositionof theagentandthe ballposition.

e betweerthecurrentpositionof theagentandthe goal of theopponent.
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Agent With Ball

If theagentis theballownertherearefour mainoptions.At first theagentiooksif there
is a possibilityto scorea goal. If thereis no chancefor a goalthenthe agentchooses
ateammatdor a pass.In casehefindsa suitablepasspartnethe agentcommunicates
the estimatedposition of the ball andthe uniform numberof the playerwho will get
theball. Thenhekicksto thatposition.If thereisn't agoodpasspartnethe agenttries
to dribbletheball in a directionwheretherearenottoo mary opponentsSometimest
is dangerougo dribblethe ball becausét is too easyfor the opponentgo gettheball.
In thatcasethe agentkicksin thatdirection. Thiswill givestheteammates chanceo
gettheball or atleasttheball will go closerto thegoalof theopponent.

Goal Kick

Thereis aprocedurgyoal _kick() thatcheckghepossibilityto scoreagoal. Theagent
only kicks the ball towardsthe goal of the opponenif the distanceof the agentto the
goalis equalor smallerthan19,5meters.

The goal line of the opponentis divided into 25 points with the samedistance
betweerthepoints. Linesbetweerthe positionof theagentandthesepointsaredravn
andarechecledif thereareopponentn them. The agentkicks the ball towardsthe
goalif thereis aline with no opponentonit. Thelinesarechecledfrom the outside
to theinsidesothereis a chanceof agoodgoalkickinto the cornerof thegoalbecause
the chanceof the goalkeepetto catchthe ball is moreimprobablein thatcase.

Passing

In orderto get a corvenientteammatefor a passtherearetwo strategjies. The first
stratgy of the behaior our agentsis realizedin the decisiontreeby the function
passpartner() andthe secondone describeghe behavior our SFLS-teamusesin
thefunctionbestPasspartner(...)

Figure4.3: DecisiontreeStrategyy: Theballowneris on his own half.

The two strat@iesare basedon the samefundamentaidea. In orderto find the
directiontheball will be shotinto theballownerorientatesimselfat pointsin thefield
or at the fieldline. Lines betweenthe positionof the ballpossessoandthe different
pointsaredravn andafter thatarechecledfor the numberof opponentghatarein a
conealongthelines. Thelineswith the fewestopponentsarechecledfor the number
of teammatesvhich arearoundthe lines. If thereis at leastone teammatehenthe
positionof theteammatgor teammatesis projectedontheline.
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Figure4.4: DecisiontreeStrategyy: Theballowneris onthe opposinghalf.

Thereis afunctionpositionPassValue(. ) whichevaluateghe differentpoints
with threecriteria. The first oneis to look at how mary opponentsare aroundthe
pointin aradiusof 2 meters.The next valueis computedor the positionof the point
comparedo the lengthof the field. Thatmeanghe ideais to play the ball outwards
in the backof the field andinwardsfrom the middlelineon. The last criterionis the
distanceto the opposinggoal. Thesethreevaluesdeterminethe choiceof a point on
a given line andthusthe teammate.After this is donethereis anothercheckof the
opponentsut only up to the projectedpoint of the teammate.The directionwith no
opponentss choserandtheball is played. The teammatavhosepointis projectedon
theline is the suitablepartnerfor the pass.

Figure4.5: SFLSStratey: Theballowneris on his own half.

Now, the differencebetweerthetwo strategjiesareat first the positionsof the base
points.In thedecisiontreetrateyy 15 pointsareplacedon thefieldlinesattheopposing
sidewhich shouldhelpto find the direction(fig. 4.3, Fig. 4.4). By comparisorin the
SFLSstrateyy the pitchis dividedinto regionsin which the pointsarefixed (Fig. 4.5).
The regionsarethe seconddifference. Into which region the ballownerwill play the
ball is determinedy his positionbecauseot all regionsarejoined (Fig. 4.5).

Drib bling

To dribble the agentusesa procedurekick _ball(...) from the CMU- Code. The
agentshootgheball alittle in front of himselfandinterceptdt againimmediately The
directionwherethe agentis dribbling to is choserby the samestratgy asthe passbut
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theline might not be free of opponents.f thereis an opponentvho wantsto getthe
ball the agenttriesto rotatethe ball aroundhimselfsothe opponentant getit.

ClearanceKick

A clearancekick is doneif thereare opponentsaroundthe agentin a radiusof two
meters.Thenit is moredangerougo dribble the ball. The agentkicks the ball along
the bestline. Thatmeangheline alongwhich he would dribble normally. The agent
usesthe sameprocedurekick _ball(...) but the shotis muchharder

4.3.2 Defense

Therearefour maindecisionswhich determingheactionto be executedby theagent.

Thefirst thing thatthe agentwill do is look for a messagdérom the online coach.
It is possiblefor the online coachto communicatean opponentwho the agentshould
cover. If thereis no suchmessagéhenthefastestigentgoesto theball andtriesto get
it. If theagentisn't thefastesplayerthenhelooksfor anopponento mark.

In a situationwherethereisn’t anopponento cover for theagent(for exampleall
opponentarecovered)thenhe goesto his homepositiorandchooseghe bestpointin
his homerangéo obsene the ball.

LookForBallFr omHomePos

If the agentis not responsibldor an actionasto getthe ball or to markanopponent
thenhe movesto a point which lies betweerhis homepositiorandthe positionof the
ball. The pointis situatedon a circle aroundthe homepositiorso the distanceto the
homepositioris equalto theradiusof the homerange.

Cover

The function getOpponentToCover()  is usedby the agentto choosehis opponento
cover. An opponentvhich canbe coveredshouldbein the maxrangeof theagentwho
will cover. Soatfirst thereis a checkif thereareany opponentsn his maxrange.

Thoseopponentsare ratedaccordingby their currentposition. The valueswhich
determinethe opponentarecomputedoy the functionopponentWeight(...) . There
arethreedistancesvhich areconsideredThefirst oneis thedistanceérom the position
of the opponentto the homepositionof the correspondingagent. This valueis the
smallesbecausd is theleastimportant. Thenext valueis thedistanceof theopponent
to theball. Furtherthemostimportantvalueis the distanceof theopponento ourgoal.

The next stepis to controlthe opponentsvhetherthey arealreadycoveredby an-
otherteammateThecheckbeginswith the bestopponentthatis theopponentvith the
highestvalue.If noneof the opponentsarein the maxrangeof theagentthenhe looks
atthe closestopponento our goalandwhetherhe shouldbe covered.If thatisn't the
casethenhelooksat the opponentlosestto himselfandchecksif ateammates near
this opponenbr not.

Thereare three different kinds of marking. The first oneis to cover our goal.
This situationis realizedif the distancebetweernthe opponento cover andthe goalis
smallerthan30 meters.The agentthengoesto a point betweerthe opponentandthe
goal. Ideally, thereis no possibility to shootat the goal. The secondcaseis to place
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the agentbetweenthe opponentandthe ball, so, the agentpreventsa passfrom the
opposingballonvner If theagentdoesnt know wherethe ball is thenhe goesdirectly
to theopponent.

4.3.3 Other PlayModes

Thebehavior of theagenwhichwasdescribedofar shovstheplay duringtheplay _on-
mode. Of course thereare other situationsduring a gameof soccerwhich the agent
hasto master

Kick off

The kickoff is doneby the playerwhich is the closestto the ball and thereforethe
closesto thekick-off point. Mostly the agentwith the uniform numberelevengoesto
theball andpassesheball to theteammatavith the uniform numbeffive. It turnedout
to bethatthe positionof this playeris the bestto begin the game.To kick the ball the
agentusesthe procedurepass _ball()  from the CMU-Code.

Freekick, corner kick, kick in, offside kick

For thesesituationsthe agentusesthe sameproceduremy kick _tree() . Oneagent
goesexactly to the ballposition. To find a teammateo receie the ball afterthe kick

the procedurepasspartner() is used. In casethereisn’t a suitablepasspartnea
secondagenthasalreadygoneinto the directionof the ball andstoppedb metersshort
of it. So,theagentwhowantsto playtheball hasateammateo safelyshoottheball to.

If theagents neithertheclosesinorthesecondlosesto the ball thenhetriesto avoid

the opponentsFor this behavior of the agentthe proceduregetFreeRunPos(...) is

employed.

4.3.4 Conclusion

To realizeour simulatedsoccerteamve hadto overcomesomeproblems.Transferring
thetheoreticalideasinto practiceturnedout moredifficult thanwe thought.

At first we underratedhe noisewhich the sener introducesinto the game,e.g.
the deviation of the positionsof the playeror the position of the ball. Oftenwe had
trouble with the position of the teammatesr the opponentshecausehey stoodon
a different position than we assumed.Obviously, for instanceto kick the ball to a
teammateexactly was a difficult action. Furthermorethe possibility to computethe
positionsof the opponentexactly didn't exist, thereforethey wereagainandagainin
theway duringa passaction.

Another difficulty was handlingthe information aboutthe visibility becausehe
agentdoesnt seethe playeror the ball if they aretoo far away from him or notin the
viewconeof theagent.So, the exactnes®f the knowledgeaboutotherplayersandthe
ball decreasedradually In thosesituationgheagenthadto estimatethe positions.Of
coursethey arent exactthatway.

Theseproblemsareintroducedby thesenerbecauseherepresentationf thegame
shouldbe realistic. To filter out the senerintroducednoisein the informationabout
the gamerequiredmuchexperience.
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To find a goodstratay, e.g. for passingthe ball or for coveringan opponentwvas
anotherdifficulty. We hadto testdifferentstratejies. To find a suitablepasspartner
e.g.we havefirst tried searchingonthewholefield. Thatrequiredalot of computation
time becausehe ballownerhadto considerall teammatesAnotherproblemwasthat
the agentpassedackat the wrong momentor a groupof agentsstartedpassingoack
andforth to eachotherin front of our goal. So,the ball seldomgotinto the opposing
half andwe hadto dealwith mary risky situations.

Furthermoreherewere problemswith all agentsgoingto the sameregion, e.gto
cover the sameopponentor to getthe ball. This difficulty was solved by the imple-
mentationof conditions,e.g. not goingto the opponentf therealreadywereenough
teammatesirounda given opponent.At first we didn’t considerthosesmall but very
importantaspects.

4.4 Goalkeeping

This sectionwill describethe agentof our teamresponsibldor goalkeeping. It will
explain why we choseto divide the decision-makingpart of the code(playtree)and
why we createda playtreeof its own for the goalie. The remainderof this sectionis
organizedasfollows: Therewill bea shortintroductionon thetasksof the goalieand
on why we madethe decisionto treatthis agentdifferently. The next partwill deal
with the knowledgeof the ball positionandwith watchingthe ball constantly Then
we will describeour positioningandmovementconceptdor the goalie,payingspecial
attentionto theimportanceof thesetwo for goodgoalkeeping.Thelasttwo partswill
treatcatchingandhandlingtheball, andtherewill beashortevaluationof our goalie’s
behaior.

4.4.1 Intr oduction

Theagentwho is supposedo keepthe goalhasto betreatedsomeavhatdifferentfrom
theotheragents As in reallife, agoalkeepeiin generahastasksthatdiffer from those
of field players.The obviousability givento this agentis of courseto executea catch.
That,andthis agents morespecializechandlingof gamesituationsmadeus avareof
the needto createa separategjoalieplaytree.This decisionevolvedin the early stages
of the playtreeprogramming.Subsequentlythe two playtreesstill sharedsomeof the
featuresput weredevelopeddifferentlyin critical areas.Theseareasncludewatching
theball, positioningthe agentandball handlingaftera catch. We'll dealwith eachof
thesein thefollowing sections.
Our playtreeduringplay_on situationsfollows thesegeneraldecisions:

e Checktheview width

Try to catchtheball (or kick it avay)

Try to intercepttheball if it'sin our own penaltyarea

Try to interceptthe ball if it'sashot

Find agoodposition

Scanthefield
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Of thosegamesituationswherethe ball is resting,the only two really important
to the goalie are the onesafter he hascaughtthe ball or when a shotwent wide of
thegoal. All otheronesare equivalentto the generalplaytreeof the otheragents.A
featurethatwasincludedin the codebut not usedwasthe possibility to evaluatethe
coachmessages.

4.4.2 Watching the ball

Evenmoresothanotheragentshe goalieneedgo know exactly wheretheball is. In
critical situationsg.g.whentheball is in the own penaltyareaor closeto it, thegoalie
agentshouldwatchthe ball constantly Therefore,the first option consideredn the
playtreeis whetherto switchthe view focusor not. Narrowing the view focusis only
advisablevhentheball is very closeto the agent.

We createdwo routinesthattestwhetherthe ball is moving towardsthe goal. The
first, BallHeadingTowardGo al , testsfor generaball movementanddirectionthereof,
whereaghesecond]sShot , evaluatesall situationsin whichtheball is moving in our
direction. IsShot thentakesinto accountthe ball velocity andthe proximity of the
ball to our goal. It turnedout to beimportantto recognizeshotsquite early, asto have
enoughtime to reachthe interceptionpoint. But equallyimportantwasto avoid false
positives,becaus¢hey led to errantgoaliemovementswhichin turnledto losingsight
of theball andbadpositioning.

4.4.3 Positioning and Movement
Importance of goodpositioning

In the RoboCupsimulationleague,it is especiallyimportantto pay attentionto posi-
tioning. As in reallife, it decreasetheneedfor movement(andwith it lossof stamina)
andincreaseshe chanceof interceptingheball. Assessinggamesituationsandreact-
ing appropriatelyto ball position,ball speedandplayerpositionsis animportantarea
of agentdevelopment.This is especiallytrue with respecto goalkeeping.If another
agentmisjudgeghe velocity of the ball andfails to interceptit, thenin theworstcase
the opposingeamwill gettheball. If the goaliefails to intercepttheresultis usually
agoal.

It is importantto be in a good positionto catchthe ball in ary gamesituation,
becauseheball speedtanbe somuchgreatetthanthe playerspeedin the simulation
league you alsohave to take into accounthatthe goalis twice the sizeasin reallife.
Thismeanghegoaliemighthaveto covertwice thedistancelf thegoaliefailsto bein
agoodpositionbeforea shot,therewill never be a chancefor him to catchthe ball in
time. Onecannotstresghis factorenough— eventhoughit might seento beatrivial
reallife obsenation.

Movementconcepts

Theotherimportantfactorin goaliedesignis his knowledgeof the positionof theball,

asdescribeckarlier To ensurehatthe goaliealwaysknowswheretheball is, it seems
importantnot to move too much (becauseahat might involve turning the neckandso

forth). This wasachieved by integratinga movementthresholdwhich madethe agent
ignoreminimal positionchanges.
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Then,if the agenthasto move, he shoulddo so without losing sight of the ball.
Thatis, we let the agentmove backwardif gettingto the new positioninvolveda turn
greatetthana certainthreshold.Of courseJong distanceshouldnotbe coveredin this
fashion for theagentcannotdashbackwardsasfastasforward.

General positioning concepts

Obviously it is bestto positionthe goalie on a point betweenthe ball and the goal

line. To avoid moving too far to oneside of the goal, though,it is bestto make the

movementtowardsthe sidesof the goal more difficult the further out the agentgets.

In FindGoaliePosition we usea line parallelto the baselineandfive metersfurther

into the field to positionour goalie. An intersectionbetweenthe projectedball-line

with this 5-MeterLine is computed. An exceptionto this rule is the casewhenthe

ball crosseshe 50-MeterLine. Thenwe computeanintersectiorbetweera halfcircle

aroundour goal and the projectedball-line. Finding a point doesnot meanthatthe

goaliewill actuallymovetothatpoint. As mentionedefore maiginal positionchanges
areignored.

Situational positioning

During gameplaythis generalpositioningconcepts the default casefor goaliebeha-
ior. If a situationarisesin which the goaliedeemshimselfto be the closestand/ or
fastesplayerto theball, he of courseleaveshis positionto interceptthe ball. We also
experimentedvith conceptdor positioningof thegoaliein casehe shouldcomeout of
the goalto interceptan opponenir to cover asmuchof the goalaspossible.For the
former, we usedthe CMU ‘ShouldlIComeOut®Opponeti function.

4.4.4 Catching and handling the ball

For catchingtheball we usedtheCMU functiongoalie _catch . We experimentedvith
aroutinethattried to delaycatchingtheball (whenit wascatchablejor onemorecycle
andusingthegainedcycle for movementasto improve catchprobability. Eventhough
the sener-sidecatchprobability is setto 100%,the goaliecanmissthe catchbecause
his knowledgeof ball speedandball positionis inaccurate Thuswe tried to make up
for thesemaminal errorsby trying to geteven closerto the ball to be absolutelysure.
Unfortunately we werenotableto prove or disprove thevalidity of this approach.

Sometimeswhena catchfails, it is still possibleto kick the ball during the next
cycle. We usedthis extensively to ‘get rid’ of theball.

After acatch,the goaliehasa few possibleoptions.Because¢he agentcanusethe
move senercommandhecanbeplacedanywhereinsidethe own penaltyarea.lf there
weretoomary opposingplayersin thegoaliesvicinity, or theagentwasnt ableto find
a passpartnehe moved againto the otherside of the penaltyarea. The goalie also
waitedsometime (usually 25 cycles)to give his teammates chanceto repositionas
goodpasspartnerandto regainstamina.

A similar situationthat basicallyusesthe samecodeis the goaliekick aftera shot
wentwide of thegoal,exceptfor thefactthatthegoaliecant move.

We oftenraninto the situationthat our goaliemovedto a spotquite far outin the
penaltyarea,kickedthe ball andthenthe passwasintercepted.This usuallyled to a
goal againstus becauséhe goalie didn’t have enoughtime to get backto guardthe
goal.
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4.4.5 Evaluation of goaliebehavior

Watchingthe goaliewas sometimesvery frustrating. Often, he misjudgedball speed
andheading andfailedto catchthe ball properly This could have beendueto insuffi-
cientinformation. Without a reliabledefensethe goaliefrequentlyhadto handlevery
dangerousituationsin which he didn’t really have a chance.We didn’t usea routine
to committhe goalieto a certaincourseof action,but ratherlet him decideeachcycle
onhisactionfor thatcycle. This oftenled to seeminglyconfuseehaior, astheagent
decidedon oneoption,andon adifferentonethenext cycle. In thebeginningstagef
our programmingthe goalieoftenadjustechis positionwith respecto theball, andin
doingsoturnedandlost sightof the ball. This wasespeciallyharmfulwhenopponent
teamsusedcrossesn our penaltyarea.

4.4.6 Conclusion

This sectiondescribedur implementatiorof a playtreefor the agentwho is the goal-
keeper Thefinal versionis theresultof muchexperimentingandprogrammingin the
courseof which we changedhe codequite often. We cameto realizethatthe goalie
and his defensemaybeneedto interactmoreto improve the handlingof potentially
dangerousituations.We alsosomavhatneglectedthe importanceof keepingthe ball
in sight. We think thatmostof thegoalie’s errorsweredueto insufficientor inaccurate
information.

4.5 Conclusion

Implementinga teamusingthe describedblaytreeis straightforward. Partitioningthe
playtreeinto modulesfor offensive, defensve andgoaliebehaior provedto be useful,
becausehis way peoplewere able to implementwith lessconflicts. Yet, thereare
severalshortcomingsintegratingcoachadviceinto the playtreeis difficult. Also, even
small modificationshave to be compiledwhich is time-consuming.Also changesn
the codeare proneto resultin errors. Due to the architectureand errorhandlingof
the CMU-codemary last-time-improementgurnedout to causethe agentsto crash
becausef missingchecks.In orderto understandhe overall behaior of the agents,
onehasto skim throughseveralfiles andmary linesof code.

Theseshortcomingsreovercomen our SFL-approachvhichis describedn chap-
ter8.
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Chapter 5

Communication

5.1 Intr oduction

In the RoboCupdomain agentsare able to communicateamongeachother They

do this via the say -command. Thereare relatively strict limitations on what can be

communicatedBasicallythe messag@&n agentcansendto otheragentds a string of

limited length(about512characters)Thisstringis alsolimited asto thecharactershat
areallowed. Only alphanumericatharactersandten specialcharactersnay be used.
Thereis alsoa maximum hearingrangethat defineshow far suchan utterancecan
be heard. Every agentcanonly issueonesay-Commangber cycle. An evenstronger
limitation is dueto the factthateachagentcanonly hearonemessag@ercycle. This

implicatesthatanagentcanonly hearoneof histeammatesvery othercycle.

5.2 Sharing knowledge about the current state of the
world

Communicatioris possiblein RoboCupwhich leavesthe questionwhat to useit for.
Oneimportantaspecbf the RoboCupdomainis incompleteandinaccuraté&knowledge
of theworld, whichis dueto thesensonylimits of theagentsThereforeit makessense
to usecommunicatiorto somehav overcomeor lesserthis problem. Sinceall agents
have adifferentview of andontheworld they all have differentinformationin differing
qualities.

5.2.1 The protocoland the compression

Inspiredby the stronglimitations on messagesize and alphabetwe choseto imple-
menta compressiormechanisnthatallows for a maximumamountof informationto
be communicated.A little reflectionon the typesof informationto be passedn to
otheragentsrevealedthat abouteverythingcould be expressedusingnumbers.There
areintegers,floating points,andbooleanvalues.Our compressiomechanisniets us
definethekind of numericalvalue,its range andhow maybits its precisionshouldbe.
Thisway we canput every availablebit to use(seeTable5.1).
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name type range | precision
defense boolean| 0..1 1bit
Unum integer 0..11 4bit
xCoordinate| float -60..+60| 10bit
yCoordinate| float -35..+35 9bit
confidence | float 0.1 9bit

Table5.1: Exampleswith type of numericalvalue,rangeandprecision.

Eachagenthasits own messagebject. The messagebjectcanbe fed a string,
decodeit and updateits valuesaccordingly And it canbe asled to encodeall of
its valuesinto a string using our binary compressioralgorithm. The encodingand
decodingis donein suchaway thatthe messag®bjectthatrecevesa messagstring
is thenfilled with thevery samevaluesasthe sendingone.

5.2.2 The architecture and structure

We designedhe messagstrictly object-orientedo consistof othermorespecificmes-
sages.This way the toplevel messagavould consistof a headermessagetwo team
messagesa ball messageand a strat@y message Eachof thesemessagess again
madeup of morespecificmessagesThis next exampleshavs wherein the message
structureto find the staminavalueandits confidence.

Message(own team, opposing team, ball, strategy)

e header (time, sender)
e own team (11 mates)
— mate
— mate
— mate
x positon  (x, Yy, confidence)
x velocity (X, y, confidence)
x stam na (stam na, confidence)
- stamina (float  0..3500,  5bit)
- confidence  (float 0.1, 9bit)
* neck angle (angle, confidence)
— mate
— mate
— mate
— mate
— mate
— mate
— mate
— mate
e opposing team (11 opponents)
e ball (position, velocity)
e strategy  (formation, offense/defense, passmessage)
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5.2.3 Updating the world model from the message

To updatetheworld modelfrom arecevedmessagés notatrivial task. Therearetwo
trivial waysto dealwith anincoming message.You can either completelyignore it
or believe everything. While completelyignoring it would renderall communication
uselessbelieving everythingyou hearis seldomlya goodidea. This would meanyou
ignoreeverythingyou alreadyknow. We thereforehave to think of a mechanisnthat
decideswhich informationto keepandwhich informationto updatebasedon the data
of themessage.

In our world model all datathat is subjectto changedueto the dynamicervi-
ronmenthasa confidence-alue. This value hasa rangeof zero to one. Wheneer
arything is obseneddirectly from the ervironmentthe accordingconfidence-alueis
setto 1. In everytimestepall confidence-aluesaredecreasedThusolderinformation
hasa lower confidence-alue.

Theseconfidence-alueshelp a greatdealwith integratingdatafrom the message
into theworld model. All thedatain the messagés communicatedvith theaccording
confidence-alues.To decidewhich datato keepwe canstartout with comparingthe
confidence-alues. If both confidence-aluesare the samewe cantake into account
whotold us. Theheadeof eachmessagécludesthesendelandthetime themessage
hasbeensent.With this informationwe canfind out wetherthe sendeiis closerto the
objectin questionandthereforeis likely to have lessnoisyview.

5.3 Communicating a plan

Communicationis not all aboutfactsandraw data. It canalsobe usedto coordinate
future actionswith others.We did this andare going to explain how in the following
section.As anexamplewe aregoingto look at passing.

5.3.1 How to expressaplan in amessage

Passingrequirestwo playersandtheball. Oneplayerhasto kick the ball in away that
his teammateecevesthe ball at a future momentat a certainposition. To inform the
teammatevhatthe planis, the playerpassingheball hasto tell who hewantsto pass
the ball to andwherehe is goingto kick it. Therestof the planis of courseimplicit.
The teammatehasto know that he betterget to that positionand get the ball. The
variablesin this plan areonly the uniform numberof the receving teammateandthe
positionthe ball is passedo.

Puttingthesetwo in a messagés no problemsincewe alreadyhave messagefor
numbersand positions. For every messagea player receves he checkswetherhis
uniform numberis in it.

5.3.2 Information lossand relaying

Of coursein RoboCupagentdon't hearevery messageThereis a maximumhearing
rangewhich determinesover whatdistancethe agentscancommunicate And maybe
evenmoreimportantonly thefirst messag¢hatreacheshe seneris broadcastedsee
5.1). In world modelcommunicatiorthatis no big problemsinceyou canestablisha
protocolthattellseachagentin which cycleit canbroadcasagain.Thiswayyou avoid
collisionsandcanmake surethateveryoneis heardat somepoint. In communicating

34



planslike in the passingexample things can easily turn out to be too time critical
to be handledthis way. The worst casebeing an agenthaving to wait for over two
secondantil it is its turn to talk again. The agentcan of coursetalk no matterif it
is its turn or not. The problemarisingis thatthereis no way of telling whetherthe
messagevill getthroughor not. To assurehis the messagdasto comein first. This
canbe easily achieved by introducinga priority for messagesl!f a messagéasno
priority it waitsfor its cycle andthe normalcommunicatiorinterrupt.If amessagéas
apriority it is communicatedt once.This cycle andearlyin this cycle. By doingthis
the messagéasincredibly higher chanceof being heard. To make surethe player
thatis supposedo getthe prioritized messagactuallygetsit we introduceda form of
relaying. Any agentreceving a prioritized messagetself sendsprioritized messages
for sometime. Including of coursethe crucialinformationof the prioritized message.
Thesetwo simplemeasuregprioritizing andrelaying)increasedhe speedf messages
spreadingacrosshe playing field tremendously Without themit oftentook up to 12
cyclesfor the messagéo reachits recipientwhile it only took 2-3 cycleswith these
measures.

5.4 Promisesof a communicationusing SFL

Thisbinarycompressiothatwe areusingto getasmuchinformationacrossaspossible
is of coursenot the only way to do communicatiorin RoboCup. Another methodof
communicatingvould be to sendwell-structuredrules. During the final phaseof the
project,whenwe introducedSFL, thethoughtcameupto justcommunicateSFL-rules.
By doing this the agentscould clearly tell eachotherwhatto do in the languagethat
tells themseleswhatto do. They could exchangemoreelaboratanformationon the
world. Of course this would make it impossibleto transferasmuchraw datain the
samestring.

This s of coursecompletelydifferentfrom the way we usedcommunicatiorbut it
seemdike atrain of thoughtworth to follow. The rulescould be integratedinto the
rulebaseas soonasthey are heardandthus make the agentactin a desiredmanner
Problemghataresureto ariseare:

e how shoulda single agentcomeup with a rule that his teammatecannotbut
shouldknow about

e doesa teamthat exchangegules have somesort of hierarchythat determines
who shouldlistento whom

¢ how shouldanagenttreata heardrule comparedo onethathasalwaysbeenin
hisrulebase

Theseproblemsshouldnot deteranyonebut rathershav thatthis is aninteresting
way to go. And of coursetherewill beacoupleof importantquestionghatarenotin
theabovelist.
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Chapter 6

Logfile Analyzer

6.1 Purposeof the Logfile-Analyzer

Thelodfile analyzers purposes to gatherinformationfrom logfiles of pastgamesWe
designedhe analyzerin hopeto find patternsacrossa numberof games. Our team
could then be designedwith thesefindingsin mind (to mimic or counteracthem).
Startingwith our taskwe hadapproximatelyl50logfilesfrom the lastWorld Champi-
onshipandthelast EuropearChampionship Every lodfile is abouttwo megabytesn
size.

6.2 The Logfile Analyzer’'s Basis: TimeSlice
6.2.1 The purposeof TimeSlice

BecausdroboCupis discretejt hasafinite number(approx.6000)of framesdescrib-
ing eachgame.We designeda classwhich representsucha state.An instanceof this
classknows all importantfeaturesof oneslice of time in onegame.Hencethe class-
nameTimeSlice. TimeSlicehastwo differentapproacheso save the dataof a slice:
anabsoluteandaregionalapproachln theabsoluteapproachhe coordinate®f all 23
moveableobjects(two timeseleven players,plus the ball) are saved. In theregional
approachthe field is divided into regions (the numberandthe size of the regionsis
configurable).Within this approactonly the numberof the region the objectis in, is
saved. Thisresultsin discretevalues(overasmallvalue-spacefor the objects.

A gameis represente@sa seriesof linked TimeSlices. This makesit possibleto
computedataspanningmore than onetime frame. Thereare methodsto “look into
the future”. This meanghata TimeSliceobjectknowsin how mary framesa certain
actionwill occur Theactionsfor which TimeSlicedoesthe calculationsaregoalkick,
passandball-loss.

Thesewo domaingpositionaldataand“future” data)arepresento beableto infer
tacticalinformation. Combiningthesedomaingheideawasto getruleslike “if player
A is at positionB andplayerC is at positionD therewill be (with a chanceof X%)
agoalin Y cycles”. To getsuchruleswe tried to usewell-known algorithms. These
algorithmsarediscussedelon. But we first take alook at how to useour TimeSlice
implementation.
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6.2.2 Using TimeSlice

TimeSlice is implementedas a C++class. The main constructorgets all the data
to fill the underlyingdata-structuresThe information aboutthe moving objectsare
passedwithin the structuresplayerinfo_t and ballinfo_t which are definedin
TimeSlice.h . Therearemary get -methods$ definedto accessnformationaboutthe
object(lik e ballinLeftHalf , getPossesingTeam , etc.). Thesefunctionscover the
positionaldataof the time framerepresenteddy the queriedobject.

To computethe “future” information,every TimeSliceneedsnformationaboutits
positionin the chainof TimeSlices.This is doneby giving the TimeSliceconstructor
apointerto its precedingTimeSliceobject. Functionsto accesghis “future” informa-
tion are: getTimeTillPass  , getTimeTillGoalkick andgetTimeTillLosingBa .
They returnthe numberof cyclesit will taketill theassociatecctionwill take place.
The computationprocesstakes placein the constructorof the TimeSliceclass. Of
coursewhenyou constructa TimeSliceobjectyou cannotknow aboutthe future. So
the“future” informationis propagatedackwhenit is encounteredThis meanghatif
a TimeSliceobject,which coversa time framein which a goalkick happenedis cre-
ated,theinformationaboutthe goalkick will be sendbackto all slicesprecedinghis
one. So,in practice,oneshouldonly inquire about“future” informationif thewhole
chainof TimeSliceqtherepresentationf anentirelogfile) is constructed.

Thentherearefunctionswhich serializethe data,soit canbe written to disk. The
usageof thesefunctionsdependon what you wantto do with the output. E.g. the
functionsaveC5RegionalPassD ata savesthedatain a formatwhich canbe readby
C5.0.

6.2.3 A tool which usesTimeSlice:readlLog

Themain purposeof readLog is to reada logfile from a RoboCup-gamandcreatea
chainof TimeSlicesfrom it. Then(dependingon the parametegivento readLog ) it

doessomenumbercrunchingandsavestheresult. You cangetusageinfo by starting
readLog without ary parameters.Here'’s an example: if you wantto generatedata
readableby FOIL from thefile testlog  youwould call:

JreadLog  -f test.log -x foilpass  -X ..J../FOIL6/foil6

where../../FOIL6/foil6 is thepathto your FOIL executable Thiswould automat-
ically readthelogfile, constructhe chainof TimeSlicescomputethevaluesfor FOIL
(via foilPassDribbleShoot ) andsendthevaluesto FOIL (via ananorymouspipe).

6.3 SOM

Thefirstideawe had,wasto usea SOM?. We usedthe implementatiorSOM_PAKrit-
ten by the SOM ProgrammingTeamof the Helsinki University of Technology We
usedthelatestavailableversionwhichwas3.1. We wantedto useSOMSsto clusterthe
informationwe hadin thelogfiles. We hopedto getquantitive dataaboutsoccercon-
cepts(like duels,massve dribbling, massie passingetc.). If we hadsuchinformation
we could build our teamwith thatin mind. E.g. if we would have found that mary

Imethodswith avoid argument-list
2Self-Oganizing-Map
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teamsstoppassingoncethey camewithin 20 metersof the opponentgyjoal, we could
have build our defensén away to counteracthis.

The generalproblemwith SOMsis thatyou cannotcalculatethe optimal configu-
ration of the netfor thedomainit is to be usedfor. You have to run it severaltimesin
differentconfigurationsandseewhich onenetsthe bestresults.

We alsohadthe problemof choosingthe right featurego represent time frame.
For thefirst run we chosethe positioningandfutureinformationto be usedfor cluster
ing theframes.

We startedwith a net consistingof 90,000neurons(a topology of 300x300) and
a randominitialization. We thanfed this netwith the logfiles from the World Cham-
pionships2000. The problemwasthatit took threeweeks(on a SunEnterprise4500
with two gigabytesof RAM) to trainthenet. This meantthatourtime schedulelid not
allow usto run testswith a multitude of configurationsaswasinitially planned.We
only tried one other configuration:a netwith 22,500neurons(a 150x150 topology).
Thisdid notgetthedesiredeffectandthetime whichwasscheduledor this partof the
projectranout. We now think thatmaybewe chosethewrongfeaturegor representing
atime frame. But it is very hard (if notimpossible)to chosea representatiom priori
(i.e. without ary tests). So this is anotherpoint wherewe would have gottenbetter
resultsif we would have hadmoretimeto try differentsetups.

Conclusion:We did not getwhatwe expectedrom SOM. But thiswasmainly due
to theenormousmountof computingpower neededo runthetrainingof thenet. This
meansfor us that SOMsmight be a goodideaif you wantto solve similar problems
(gettinginformationfrom datawithout knowing what informationyou want exactly)
andhave theappropriateamountof time and/orcomputingpower.

6.4 FOIL
6.4.1 Whatitis

FOIL is atool which getsdefinitionsof datatypegdiscreteor continuouspndinstances
of relationsconsistingof thesetypesasinput. Therearetwo typesof input relations:
positive andnegative. Theserelationscanbe seenas examplesfrom an object-space
(the negative relationsareof courseexamplewhich arenotin the objectspace) FOIL
now triesto find oneor morehorn-clausesvhich describesan object-spaceavhich in-
cludesall the positive examplesand non of the negativesones. If it fails to find an
exactclauseit will try to approximatgminimizing the numberof wrongly categorized
examples).

6.4.2 Why we choseit

We thoughtthatby usingour TimeSlicesasexamplesFOIL would beableto generate
rulescoveringtheseexamples.We thoughtthatrulescould be generatedvhich stated
mechanismsr tacticswhich hadnt occurredto uspreviously.

6.4.3 What we did with it

We tried to learnthreepredicatesvith FOIL: passdribble andshoot.We would learn
eachpredicatewith its own FOIL run. | will describén detailhow we gottheinputfor
FOIL to learnthe passpredicate The othertwo weretakensimilar careoff.
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The generatiorof examplesfor FOIL wasimplementedn the TimeSliceclassvia
the function foilPassDribbleShoo t. For FOIL, an exampleis a vectorwith ten
elementsthe positionof the ball owner (x andy), the numberof teammateé acone,
the numberof opponentsn that cone, the position (x andy) of the conesstarting
point, the positionof the nearesteammatgangleanddistanceto the ball owner)and
thepositionof thenearesbpponentangleanddistancdo theball owner). Thestarting
point of the coneis the positionof the passrecever. The reasoningbehindchoosing
theseinformationswas, that the relationshipof opponentgo teammatesn a region
arounda happeningpassarevital to the succes®r failure of the pass(failure means
lossof ball ownership).

To analyzeagamewe would go throughthelogfile (viathereadLog tool) andgen-
eratea positive FOIL examplefor every TimeSliceobjectwith atimeTillPass  equal
to zero. To get negative exampleswe assumed closedworld assumptionmeaning
thatthereareonly threeinterestingevents: pass,dribble andshoot. A candidateor a
negative passexamplewould a positive dribble or shootexampleandvice versa.

Beforepassinghe examplesto FOIL they weredivided into actualexamplesand
testcasesIf you supplytestcasesFOIL is ableto give you a plausibility percentage
for the clauseit generatefl

The problemswe hadwith this approachweredueto our datatypesFor the posi-
tionswe neededwo floats. Floatsarepossiblan FOIL: they gounderthedatatypecon-
tinuous,but this datatypeis very sparselydocumented We thoughtthat FOIL would
beableto calculatewith continuousdata.We ervisionedpredicatedik e

pass(A,B,MatesinCone  ,Opponet sin Cone,E ,F, GH,I, J) -

MatesinCone > OpponentsinCone

pass(BallOwnerX,Ball Owner Y,C,D, E,F G, H,
NearestOppnentX,Near  est OpponentY) :-

BallOwnerX - NearestOpponentX > 2,
BallOwnerY - NearestOpponentY > 2

But that was not what FOIL generated.We got very comple predicatesvith a
very low probability tag (mosttimes around50%). Therewere mary floating point
constantsn theseclausesvhich madethemratheruseless:a rule which stateshata
passsucceed§ theballownersx-coordinateas 14.56195vasnotsomethingve wanted
to handto our strateyy group’.

We thentried to get away from the continuousvaluesby discreetingthem. We
createdfour discreetdatatypesn FOIL. A datatypefor coordinategangingfrom -
52 to 52 with a stepsizeof two. A datatypefor player numbersrangingfrom zero
to eleven. A datatypefor anglesrangingfrom zeroto 360 in stepsof five. And a
datatypefor distancesangingfrom zeroto 20 with a stepsizeof two. Every atom
hadto be uniqueover all datatypesptherwiseFOIL would compareapplesto oranges
(read: coordinatesto player numbers). We did this by prefixing eachatom with a

3theconelengthis configurableput stayedthe sameover all examplesfor aFOIL run
4Thepercentagef thetestcasespacawvhich is coveredby the clause
Salthoughsucha stratgy might be easyto implement
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letter correspondingo thedatatypga for anglesgtc.). Becausef thatwe didn’t have
numericalatomsanymoreandFOIL couldn't useit’ s building comparisorrelations(<,
>, etc.). For this reasorwe specifieda “greater”-relationfor eachdatatypepy simply
statingall factscoveredby thisrelation.E.g. thedefinitionof greaterCoord  for FOIL
lookedlike:

*greaterCoord(Coord, Coord ) ##
€52,c50
c52,c48

¢50,c48
¢50,c46

¢-50,c-52

Theresultswe gotwith thisapproactwerent muchbetter Usingtheabose method
onthelogfile of thefinalsof the Worldchampionshi200® we gotthefollowing clause
(with a probability of 58%):

pass(AB,CD,EFGH || ) : A<E
pass(A,B,C,D,E,F,d0, H,1,J ).

An error rate of 42% is very bad andthe clauseitself doesnt saythat much. It
meanghata passshouldoccurwhenthe x coordinateof the ballowneris differentto
the x coordinateof the passreceier (which is the startingpoint of the cone),or when
thedistanceo the nearesteammates zero.

8FC Portugalvs. Brainstormer2K
<> meang'not equal”
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Chapter 7

Online Coach

7.1 Intr oduction

Justlike in humansoccerit is usefulto have someoneobsene andanalyzethe game
from the outside.Someoneavhois not supposedo actasfastandasmuchin realtime
asthe playerson the field andwho can provide advice. In the RoboCupsimulation
leaguea privileged agentcan connectto the sener in orderto work as a so-called
online coach. The ORCA projectimplementedsuchan agentwhich is describedn

this chapter The remainderof this chapteris organizedasfollows. Section2 gives
an overview aboutthe online coachin the RoboCupdomainin general. In section
3 the interfacelanguagebetweencoachand playerswill be described. The ORCA
implementatiorof a coachwill bediscussedn section4, section5 discusseshe first

coachcompetition,andfinally section6 concludes.

7.2 The online coachin RoboCup

Theonlinecoachcapabilitiesarerestrictedto obsenethegameandcommunicatavith

the players[6]. Neverthelesst is a usefultool to improve the overall teamperfor

mance[5, 17]. The coachrecevesglobal andnoise-freevisual informationaboutall

movableobjectsfrom the sener. This makescoaches valuabletool for gameanal-
ysis andopponent-modellinghecausét cancommunicateadviceandinformationto
its players. To prevent coachedrom micro-controllingplayersandthus spoiling the
distributedmulti-agentcharacteof the simulationleague jts communicatioris some-
what restricted. It can sendarbitrary free-formmessagesnly during breaksin the
game.Since2001it canalsosendmessages a standardanguagen certainintervals
duringplay-onmode.An overview of thislanguagés givenin the next section.

7.3 The standard coachlanguage

The standardcoachlanguagesnablecoachesandteamsthatweredesignedy differ-
entresearctgroupsto work together Becausef thisit is evenpossiblefor aresearch
groupto focuscompletelyon implementingan online coachwithout having to put up
with creatingateam.
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Thelanguageconsistf five messagéypewheretwo of themcontainmostof the
semanticpower. Theseso-calledinfo- and advice-messagesre basicallyrulesthat
describethe obsenedbehaior of ateamor advicesabouthow to behare respectiely.
Thesyntaxof info- andadvice-messagdsokslik e this:

(info TOKEN; TOKEN;... TOKENy)

and
(advice TOKEN; TOKEN;... TOKENy)

Thetokensin both messagéype have exactly the samesyntax:

(TTLCONDITIONDIRECTIVE; DIRECTIVE,...DIRECTIVE,)

TTL denoteghe Time-To-Live which specifieshow long a messagshouldremain
valid. CONDITION is a booleanexpressionconstructedf predicate-primitvesand
denotessituationsn whichthe DIRECTIVEsareactive. DIRECTIVEsfinally contain
info or adviceaboutactionsthatateam,asetof players,or asingleplayerdo or should
dorespectiely.

In the caseof advicethe playerscanconsiderthe ruleswithin their decisionmod-
ulesanddecidewhetherthey follow the coachadviceor ratherfollow their own beha-
ior. An example:

(advice
(6000
(and
(bowner opp {0})
(bpos
(quad

(pt 40.0 15.0)
(pt 525 15.0)
(pt 52,5 -15.0)
(pt 40.0 -15.0)

)
(do our {5} (mark {11}))

)

This advicesuggestshe following: Whenary playerof the opponenteam(0 denotes
all players)ownstheball andthe ball’s positionis in a certainrectanglen front of the
goal,the playerwith the uniform numbers5 is advicedto markthe opponenplayer11.

In the caseof info the playerscan usethe rulesthat describeplayerbehaior to
malke their own inferences Anotherexample:

(info
(6000
(playm  ko_opp)
(do opp {9} (bto {10})

42



This messagénformsthe playersthatthe opponenteamhasthe tendeng to execute
theirkick_offs by letting player9 passo opponentl0 (bto meandall-to). The players
canusethis informationto updatetheir tacticsappropriatelyE.g. they cantry to mark
opponenplayer10or focustheir attentiononinterceptingheball onits way from one
opponento theothet

Of course,to handlemessagefrom the coachthe teamdesignershave to spend
somethoughtin their players’behaior and decisionmodules. Especiallywhende-
signingateamthatcanbeusedwith coache®f otherresearctgroupsthebehaior has
to beveryflexible. The ORCA approacton this matteris describedn chapter8.

7.4 The ORCA online coach

7.4.1 Generalapproach

The ORCA online coachtakes advantageof the mary analysismethodsprovided by

theTimeSlice-clas¢describedn section6.2). As describedefore the offline analysis
tool fed informationfrom logfilesinto the TimeSlices.The online coachdoesalmost
exactly the same sincethe visual informationthatit recevesduring the gameis very

similar to that in the logfiles. Thus, during the gamethe coachmaintainsa lot of

analyzeddata. Themainconcerris to produceadvicefrom this datathatwill beuseful
for theteam.

Most of the methodsdescribedn chapter6.1 take a lot of computationtime and
needmary instancesof data. But the online coachis requiredto comeup with ex-
ploitable obsenationsvery soonto maximizeits pay-of from the beginning of the
game.Also, in casethatthe opponenteamchangests behaior, the coachhasto cre-
ate new adviceaftervery few obsenations. To achiese this, the coachsendsadvice-
andinfo-messagebasedon statisticaldataat fixed intervalsthroughoutthe game re-
calculatingits advicefor every communication.Note thatasof now the time needed
for recomputationis insignificantsincemuch of the work is doneby the TimeSlice-
methodin eachcycle. So, after the fixed intervals the coachjust hasto pick up the
analyzeddata.

The differentmethodgo provide adviceandinformationare describedn the fol-
lowing.

7.4.2 Marking

In defensesituationsefficient coordinationbetweendefenderss important.In ateam
whosedefenserelies on marking, not marking a forward at all or marking a for-
wardwith two defendersimultaneouss suboptimalbehaior. Communicatiormight
help overcomethesesituations.Yet, in the RoboCupdomaincommunicatioris time-
consumingand unreliable. Another methodis to agreeon locker-room agreements
[19]. But locker-room agreementsre not adaptie andthus cannothandleinforma-
tion acquiredduring the game. So the online coachis the optimaltool to coordinate
markingassignments.

TheORCA coachidentifiesopponenforwardsandits own teamsdefendersSince
severalteamausedynamicrole exchangg13] the ORCA coachexecutegheidentifica-
tion procedurdor every advice.ldentificationis basedon the player's positionduring
a certain,manuallychosentimespan. Sincethe numbersof forwardsand defenders
andthe averagepositionsvary from teamto team(andevenwithin ateamdepending
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onits currenttactics),we developedthe following method.We assumehateachteam
consistf threesetsof players,defendersmidfielders,andforwards.Also we assume
thatthe positiondifferencesvithin a setarelessthanthe differencedbetweerdifferent
sets.Thisallowsthecoachto look for clustersandclassifythe playersaccordingly Al-
thoughit is obviousthatnot every teamdiscrimatests playersinto thesethreesetsand
that the position differencesare fluent, experimentatiorshavs that the identification
resultsmatchhumanintuitive classification.

The next stepis to assigndefendergo forwards. A greedyalgorithm basedon
spatialdistancebetweerdefendeandforwardpositionsis used.

7.4.3 Defensveformations

Experimentshovedthatchangingonly partsof ateamstratey resultsin inefficiencies
[5]. For example,althoughdefendersare assignedo the closestopponentforwards
asdescribedabove, they tendto run long distancedrom their homepositiongo their
assignednarkingtasks.Teamperformancas betterif the defensive formationis fine-
tunedto matchthe markingassignmentbetter The ORCA onlinecoachalsosuggests
homepositionsto its defenders.

As mentionedabore the coachanalyzeghe opponenforwards’ positionsin situa-
tionsin whichthey attack.Eachcyclethepositionof theopponenplayersis countedn
agrid thatoverlaysthefield. In [16] asimilar methodis usedto matchteamsto prede-
fined opponenimodels. The ORCA coachmodifiesthis methodin orderto determine
adefensdormationasa functionof theopponents offensive formation.

Sinceplayerpositionsdepencheavily ontheball andotherplayerpositionsit is not
trivial to determinean opponeniplayers likely positionduring an offensive situation.
Theresultinggrid for a playermightlook lik e this afteraddingpositionsinto the grid
ateachcycle.

30 5

15! 25 (25 >

---------------- Resulting formation rectangle for given player

Thenumberglenotehepercentagef cyclesin whichtheplayerwasin theaccord-
ing grid section.Obviously theregion thata playerusesasa homeor actionregion is
very unclear The ORCA coachdoesnot considerevery possiblepositionbut focusses
onfinding regionsin which the playerwill bewith a high probability. To facilitateim-
plementatiorit is assumedhatthis region canbedescribedvith arectangle A greedy
algorithmis usedto find the smallestpossiblerectanglethat coversgrid sectionsthat
addup to a certainpercentagehreshold. This rectangles consideredasthe player’s
offenseregion.
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As of now the defendersareadvisedto positionthemselessomavherein the of-
fenseregion of theforwardthey areassignedo mark. Thiscreates spatialdistribution
of thedefenderdik e a defensve formation.If thedefenderdollow thecoachsadvice,
they arepositionedhearto theforwardthatthey areassignedo mark. Thisreduceghe
waysthatthedefenderdiase to runin orderto pursuittheir differenttasks.

7.4.4 Detectingopponentsetplaysand formations

Online coachesot only have the capabilityto issuedirect advice,but canalsocom-
municateinformationto their players. This provideseven moreresearchopportunity
on opponenmodelling.

The ORCA coachis designedo work with teamsof differentresearchgroups.So
it cannotrely onits playersto handlearbitraryinformationin their decisionprocesses.
Thereforethe ORCA coachfocusse®n providing positioningandformationinforma-
tion aboutthe opponent.

The formationsare a direct byproductof the methodthatidentifiesopponentor-
wardsandassignsiearbydefenderdo markthem(seesection7.4.2). For eachoppo-
nentplayerthereexists a spatialdistribution grid. With the aforementioneédlgorithm
compactrectanglegrecreatedor eachplayer Thisinformationis sentto the players
sothatthey canincorporateopponenpositionsinto their decisions.

We do not believe in identifying standardormationsbecauselayerpositionsde-
pendheaily on marking,ball movementandnoise[16]. So,observingspatialdistri-
butionsof actualplayerpositionsandcommunicatingheseto the playerslooks more
promising becaus®pponenplayersarelik ely to decidesimilaronmarkingandmove-
mentin consecutie offensesituations.

Anotheraspectwherethe ORCA coachprovidesopponenimodellinginformation
are opponentsetplays. It canbe obsened that several teamsusefixed positionsto
respondto the goalie kickoffs. The coachlooks for repeatingpositionsin standard
situationsand communicategshemto the playersif it found stablepositions. If the
playersare able to usetheseinformation, they can move to free positionsor mark
opponentgasterthanif they hadto rely ontheir own limited view.

7.5 Experiencesdrawn from the first coach competi-
tion at RoboCup 2001

Thefirst coachcompetitionwasheld at RoboCup2001. All participatingteamspro-
vided a teamandcoacheach,which supportedarge partsof the standarcdcoachlan-
guage.Thetournamenmoduswasthat eachteamwascoachedy all coachesxcept
its own. Winner was the coachwho accumulatedhe mostgoalsin its games. To
our knowledgethesewere the first gamesin which teamsand coachesrom differ-
ent researchgroupsworked together The overall resultwas that eachteamplayed
worsewith aforeign coachthanin a baselinggamein whichit wasnot coachedatall.
Though,additionalexperimentdy Patrick Riley andGal Kaminkaof the participating
ChaMeleons/®/L team[17] revealed thatall coacheperformedbetterthana coach
thatsentrandomadvice.Still, the coachcompetitioneventhadto beanalyzed.

An importantobsenationis that not even one of the teamssupportedhe whole
standardanguage. In most casesinfo-messagesvere ignoredtotally, so opponent-
modellinginformationprovidedby the coachesvasof no useatall. In onecasethese
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info-messagesvere even interpretedas advice-messagesue to a misunderstanding
on humanlevel. In one gametheseinfo-messagesontainedinformation aboutthe
formation of the opponentplayers,so the coachedteamendedup using a mirrored
formationwith thedefendersén front of the opponengoalandtheforwardsin front of
their own goal. Formationswere problemsanyhow, becausahe teamsuseddifferent
conceptof homepositions. Not all of theseconceptavere consistentvith the home-
directive.

Oneteamcrashedassoonasthe coachsenta playm -conditionbecaus®f anerror
in the languagedocumentationvhich claimedthe properkeyword waspmode. Addi-
tional complicationsarosefrom the factthattheteamsintegratedcoachadvicein very
differentways. Oneteamalwaysfollowedadvice,othersonly sometimesandanother
teamgenerallyignoredcertainadvicein somesituations. So coachinstructionsthat
relied on fine-tunedadviceslike OWL's setplays[17] or the marking- and defense-
formationof the Dirty Dozencoachwerelikely to fail, becausesometeamsdid not
interprettheseinstructionsas”all or none”. Theinterpretatiorof the gamess difficult
even when analyzingthe logfiles, becausehe detailedimplementationand decision
processesf foreignplayersarein large partsbeyondour knowledge.

The overall lessonlearnedfrom this is thata standardanguages only asgoodas
thehumandesigneragreeonits semantica&ndinterpretation Also thereis nousein a
standardf only partsof it areimplemented Finally, whenpluggingtogethersystems
thatweredesignedy differentgroups,atestingphases indispensable.

We'd lik e to thankPatrick Riley from the ChaMeleon/@VL team[17], YangYang
from the Wright Eagleteam[9], and Omid Aladini from the Hella Respinateam
[8] who provided detailedinformation aboutthe implementationof their teamsand
coaches. Without their help our experiencesrom this competitionwould not have
beenpossible.

7.6 Conclusion

This chapterdescribedhe approachof the Dirty Dozencoachandthe adviceit pro-
vides. A methodhow to efficiently usethis advicein playerswill be introducedin
chapter8. Online coachegrovide the opportunityto focus on opponent-modelling,
andthe standardcoachlanguageencouragesooperatiorbetweendifferentresearch
groupshy pairingteamandcoach. The coachis a powerful tool, becauset cancon-
siderinformationthatis not directly accessibldo playeragents. Yet integrating its
adviceis not trivial, especiallywhenworking with foreign teams. Using teamswith
coachesashigh demandn theflexibility on boththeteamandthe coachside. The
coachon the onehandhasto find out theteams flaws andneedsandhasto comeup
with usefuladvice.But on the otherhandit alsohasto obsene the effect of its advice
to ensurethatit doesnotdistractthe playersmorethanit helpsthem,ashappenediur-
ing thefirst coachcompetition. Theteamhasto be designedsothatit cangetmaximal
pay-of outof theinformationandadvicethatthe coachsends.
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Chapter 8

SFLS

8.1 Intr oduction

Specifyingthe behaior of a multi-agentteamis not trivial andmostof the time only
possiblefor domainexperts[12]. Oftenthetactics,stratgies,andoverallbehaior are
buried somavherein the system sometimesvendistributedthroughoutmary files of
sourcecode. In thesescenariosnodificationsto the teamaretime-consumingerror
prone,andnot transparentAlso, if the behaior is not explicitly representedbut im-
plicitly within linesof programcode,automaticadaptatioris very hard.

This chapterintroducesa methodcalled Stratgyy FormalizationLanguage(SFL)
which we implementedor the RoboCupdomain. By representinghe teambehaior
in SFL, humanscanmodify it easilyandfastwithout having to recompilethe source
code.Evenonline modificationgo theteamstrateyy by a coacharepossible.

Thenext sectiongivesanoverview of thelanguageconceptof SFL, particularlyby
comparingit to ClangconceptsA sectionabouttheimplementatiorof a SFL system
follows, andthelastsectionconcludes.

8.2 Strategy Formalization Language- Concepts

SFL is basedon the standardcoachlanguaggClang)[6] (seesection7.3). Oneof the

designconceptof SFL wasto make it downwards-compatiblevith Clangin orderto

facilitateintegrationof advicesby anonline coach[5] (seechapter?7). Clangaloneis

not detailedenoughto specifyateams completebehaior. SFL extendsit by adding
primitivesto thesetof conditions actionsandthecontrolkeywords,andby abstracting
severalClangconceptsTheseadditionsaredescribedelow.

8.2.1 Abstracting Clang concepts

Oneobsenationin theRoboCupdomainis thatcertainbehaiorsneedo beexecutedn
situationswherethe player's exactidentity doesnot matter For exampleoftenplayers
needto intercepttheball aftera pass.Eachplayerneedsabehaior to achiese this. But
Clangonly providesconstanuniform numbergo denoteplayers.SFL generalizeshe
uniform numberconceptby introducingvariablesandprimitivesfor situation-specific
symbols.We will discusdothof thesein turn.
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Uniform numbervariables(i.e. variablesthat denotean uniform number)arethe
only way to referto the sameplayerin differentconditiontokens for example

(and
(ppos opp {X} SOME_REGION)
(ballinterceptable opp {X})
)

denoteghe situationthatan opponenplayeris in a certainregion andis ableto inter-
cepttheball. But with variablesit is not only possibleto mapthis conditionto true or
false,but they arealsothe only way to denotethe sameplayerin thedirective part:

(advice
(6000
(and
(ppos opp {X} SOME_REGION)
(ballinterceptable opp {X})

)
(do our {3} (mark {X}))

Situation-specifisymbolsfor uniform numbersdenoteplayersthat obtaincertain
functionsin differentsituations. It is a frequentsituationin RoboCupthatthe player
thatis closesto theball shouldinterceptit. Constanuniform numberghatareusedin
Clangareof no useto expressthis. SFL extendsthe expressvenessf Clangby intro-
ducingprimitiveslik e "ClosestPlayer®Ball” or "FastestPlayeidPlayer”. The specific
playernumberreferredto will be boundto the symbolin the cycle in which therule
fires. This allows to formulatemary micro-situationsn a very conciseway.

Anotherextensionis the parameterizationf existing conceptsn Clang. The se-
manticsof actionsin Clangare very general. For example,”(pos REGION)” means
thatthe playershouldpositionitself in a certainregion. Region canreferto arbitrary
portionsof thefield andto locationsof playersor theball. Soit is a hugedifferenceif
the playershouldreturnto its homepositionrwhenit is underno explicit time pressure
comparedo the situationin which it hasto hurry to an opponentplayerin orderto
markit beforethe opponentcangettheball. SFL introducesa parameteto the pos-
actionto denotethe powerthataplayershouldspendor its moves.In conjunctionwith
the stamina-conditiorfseesection8.2.3)this canbe usedto formulatestamina-sang
tactics.

Therearemoreactionsthatwereextendedby parametersSeetheappendixor the
whole grammarof SFL in Backus-Naur

8.2.2 Control keywords

A veryimportantfeatureof SFL s its capabilityto specifyrulesthatcannotbe overrid-
den. In thefirst coachcompetitionat RoboCup2001the ChaMeleongeam[17] used
hard-codedehaiors that could not be overriddenby coachadvice. This is a useful
methodto make suree.g. thatthe playerthatis the fastesto the ball will interceptthe
ball. It is very easyto specifythisin SFL usingthe "force” keyword. A rule thatcon-
tainsthis keyword will be executedho matterhow mary morerulesareactive. If there
aremorethanone”forced” rules,only thefirst onewill be encounteredpecausehen
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thematchingprocesderminatesThis canalsobe usedto speedup therule evaluation
processsimilarto the cutin Prolog.

8.2.3 Conditions

The aforementionedntroductionof uniform numbervariablesand situation-specific
symbolsalreadyextendsthe condition specificationexpressveness. But in orderto
implementateammorelow-level andhigh-level conceptsareneeded Theseconcepts
areintroducedby addingprimitivesto Clang.First someof thelow-level conceptawill
bedescribedfollowedby somehigh-level predicates.

In orderto determineif a player can get the ball beforeany opponentdoes(it
doesnot needto be the closestplayerto the ball, cf. section8.2.1), the predicate
(ballinterceptable TEAM UNUM_SET) is introduced. It is true, if ary playerin
UNUM_SET of the giventeamcangetto the ball beforeit movesout of boundsor
is controlledby an opponentplayer Dependingon this conditione.g. offensive or
defensve actionscanbe executed.

Anotherlow-level predicatés (ball velocity VALU E) which checksthevelocity of
theball. VALUE canbeaconstanbr avariable.Variablescanbe usedin conjunction
with the less-,greater, equal-predicatethat arealsoaddedin SFL. For example,the
power that a player shouldexert in orderto getthe ball canbe specifieddepending
on the speedof the moving ball and (alsointroducedin SFL) the player's remaining
stamina.

Severalteamschangetheir tacticsandformationsbasedn the goal differenceand
remainingtime [19]. SFL containshigh-level predicatedik e theseto specifythe be-
havior basedon thesestrateically aspects. Seethe appendixD for the whole SFL
syntax.

8.2.4 Actions

Someof the actionsof Clang have beenextendedby parametergseesection8.2.1).
The setof Clang-actionss quite exhaustive. SFL introducesonly onemajor concept.
Interceptball causegheplayerto getto the ball asfastaspossible.

8.3 Implementing SFL

In this sectionanimplementatiorof SFLwill be describedthe Strateyy Formalization
LanguageSystem(SFLS).It shouldbe notedthatthisis only oneof thedifferentways
to implementa multi-agentsystemusing SFL. The systemdescribechereconsistsof
several modules: the parserwhich builds objectsfor eachrule, the matcherwhich
evaluateswhich rules are active at eachtime step,the selectorwhich decideswhich
oneof the active rulesshouldbe executed andfinally the effectorwhich decomposes
the selectedactionsinto sener primitivesand executesthem. Eachof thesemodules
will bedescribedn moredetailin thefollowing.

8.3.1 The parser

Thesoccersersrpackageontainsalex/yaccparseifor parsingthestandaracoachlan-
guageClangthatis usedby the soccerserer itself to recognizdegal coach-messages.
The ClangparsettranslateClangmessagemto C++ objectsby creatinga new object
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for every messagandevery non-atomaelementof the messageThe resultis a hier-
archicalobject-structureepresentinghe messageDevelopersareencouragedo use
this parserfor coach-messaggarsingin their agents.

lex/yaccis a setof parsergeneratoitools that provides a syntaxfor describinga
grammarby specifyinglexical entriesand productionrulesandfrom this description
generates C-programthatis ableto translatestringsfrom the languagegeneratedy
thatgrammarinto ary datastructure.For thatpurposegrammarrulescanhave pieces
of C-codeattachedo themthatarebuilt into thegenerategarser This codeis executed
whentheruleis appliedduringthe parsingprocessandis usedby thegenerategbarser
to build up the outputdatastructureusingtheinput of theappliedgrammarrule.

As SFL is an extensionof Clang, implementingthe parsersimply consistedof
extendingthe Clangparseiby addinglexical entriesandgrammarrulesfor theconcepts
new to SFL andof providing the classesn whoseinstanceshey areto be stored.

The parsers input comesfrom the initial behaior-file in the form of SFL-rules
readin atthe startof eachagents lifetime, and, via the sener, from the coachclient
in the form of coachmessagesluring the game. After a rule is parsed,its object
representatiois storedin arulebasewhereit remainauntil its time-to-live hasexpired.
Themodulesmatcheyselectoandeffectorwork with SFL-ruleobjectsratherthanwith
SFLS-rulestrings,sothatparsingonly hasto be doneoncefor eachmessagarriving.

8.3.2 The matcher

At eachtime stepthe matcherdetermineswhich rules are active. This is doneby
evaluatingthe condition partsbasedon the world model of the agent. Ruleswhose
conditionsareevaluatedastrueneedalsobe checledif their directive partsreferto the
agent.Only in this casetherule will be handedoverto the selectomodulewhich will
decidewhich of theactive rulesshouldbe executed.

Variable- and symbol-handling

Evaluatingconditionsis called matching,becausesimilar to Prologit triesto prove a
conditionbasedon the currentworld model. Someconditionsare checled straight-
forward, like the play-modecondition. But several conditionscan containvariables.
SFL usestwo typesof variables:

e uniform numbervariableswvhosedomainis 0,1,2,...,11

e realnumbervariableswhich denoteanintegeror float valuelik e thetime cycle
or thespeedf theball.

At the beginning of the matchingprocessall variablesare uninstantiated. Whenen-
counteringsuchan uninstantiatedrariable,the matcherassignsvalueswhich are de-
rivedfrom theworld model. In the Dirty Dozenworld modelall variablesin SFL can
beinstantiatedassoonasthey occur Handlingof realnumbervariabless easy A vari-
ableis eitherinstantiatedr not. Thereis no conceptin SFL thatcanfail whenusing
ungroundedariables soassigningraluesto uninstantiatedariableswill alwaysresult
in anevaluationastrue . Beginningatthe secondencounteringrealnumbervariables
can make conditionsfail. Uniform numbervariablesare a differentcase. They are
handledsimilar to domainsin ConstraintSatishiction Problems[11]. Thatis, these
variablesrepresensetsof uniform numbersthat satisfythe condition. Thesesetsare
reduceddy consecutte conditions.An examplemight illustratethis.
Let usassumave have thefollowing SFL condition:
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(and (ppos our {X} REGION_A) (stamina our {X} high))

Letusalsoassumehatin thecurrentsituationtherearetheplayerswith theuniform
number,3,and4 in REGION.A, whereonly player3 hasahighstamindevel. Player
5 hasalsoahigh stamindevel, but is outsideof REGION A. So,whenencounteringk
for thefirsttime, thematchemill instantiateX with {2,3,4}. In thestaminaconditionit
needdo cutthedomainof X by removing 2 and4, which do not satisfythis condition.
If noteven3 hadahigh stamindevel, thewholeconditionwouldfail. If theconditions
whereconnectecdy anor -junctor, the setthatsatisfiesthe ppos - conditionhadto be
unionedwith the setthat satisfiesthe stamina -condition, resultingin {2,3,4,5. The
situationgets more difficult, if negationsare usedwith nestedconditions. So each
conditionneeddo beevaluatedconsideringts contect with negationsandjunctors.

Situation-specificsymbolslike ClosestPlayerToBall have to be evaluatedat
eachtime step,too. They evaluateto exactly one uniform numberso they canbe
treatedik e constantsfterwards.

Rulesthat containuniform numbervariablesor situation-specifisymbolsin their
directive parthaveto be evaluatedbeforethe matchercandeterminavhetherthey refer
to theagent.If theagentsuniform numberdoesnot appeain the constanuniform set
of thedirective partof arule, the matchercanskip this rule, becaus¢he actionsdo not
referto theagent.

The valuesof variableshave to be storedlongerthanjust for the rule evaluation,
becausehe selectorhasto work with them.

Definitions

Justlike in Clang,in SFL it is possibleto defineconditions,regions, directives,and
actions,in orderto referto themby a shorthandle. The matcheralsomanageghese
definitionsby maintaininga tableof namedor eachclassof definitions.Basically the
definedconceptsare storedas objectsjust lik e the otherrule componentandlinked
into thematchingprocessf theirnamesareencountered.

8.3.3 The selector

As mentionedbeforethe selectorchooseshe bestrule from the active rules. In this
implementationthis was donein a simple, yet effective way. Eachrule is assigned
a fixed priority. The basicidea behindthis is that rules are heuristically evaluated
on eachof the threeClanglevels (actions,directivesand conditions),beingassigned
threefitnessvaluesthataresummedup. So, certainactionsseemmorepromising,e.g.
interceptball hasa higherfitnessthanmarkingon the action-level. Directivesrefer
to differentsetsof playersandthe morespecifica playerset,the higherthedirective’s
fithesson the directiveslevel. E.g. thefitnessof a directive that refersto the whole
teamhaslessfitnessthana subsetwhich againhaslessfitnessthana situation-specific
playersymbol.

Sincetherulesspecifiedn theteam-implementatioarefixed,thefitness-assignment
is donemanually but automatecissignmentvill be straight-forward.

The third level is basedon the conditionsand is basicallya way to save world
knowledgefrom therulesandincorporateéheminto the selector Soit is not necessary
to specifyin a rule that the agentshouldonly mark an opponentf no teammates
alreadythere. Certaincommonsenseheuristicscanbe usedon this level to assigna
fithessvalueto eachrule. This hasnotyet beenimplementedsothe SFL-rulesin our
teamcontaincertainamountf this commonsenseknowledgeexplicitly .
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The selectorwill thenexecutethe rule with the highestfitness,unlessone of the
rulescontainsthe "force”-flag which denoteghatthis rule shouldalwaysbe executed
if its conditionis true.

Theactionis thenhandedverto the effectormodule.

8.3.4 The effector

In our SFLS-implementatiotthe effector is a straight-forvard mappingfrom the di-
rectives, that the selectorprovides,to the low-level skills. Thanksto the CMU code
thereis a large setof low-level skills and functions. So the effector basicallydoes
somecheckswhetherthe given action can be executeddirectly or needssomemore
decomposing.

SFL doesnot requireto list all necessargonditionsfor anactionin thefirst place.
Althoughsomeactionsmightalreadybeenfiltered out (in futureversionof theselector
module)if their conditionsarenot satisfiedthe effectorfor examplestill checksif the
agentis closeenoughto the ball and facingthe correctdirection beforeexecutinga
pass.

As of now, if anactionfails and cannotbe executedthe agentwill do nothingin
thecurrentcycle. In laterversionghe effectorshouldbe ableto requesainotheraction
from the selectorif therewereseveralto choosefrom. For example,if a pass-action
containsawholesetof uniform numberstheselectowill only passoneto theeffector.
If for any reasortheactionturnsoutto beimpossibletheselectomeeddo provideone
of theotheruniform numbersn thesetasatamget.

8.3.5 Integrating coachadvice

In our SFLS-implementatiomtegratingcoachadviceis straight-forvard. Eachadvice
tokenthatthe coachsendsduring the gameis addedto the rule base.The priority of
coachrulesis a high fixed value. This way it canbe guaranteedhat initial rulesthat
theteamdesignerslo notwantto be overwrittenby the coachcanbeassignedhigher
priority, retainingthe possibility thatdefault or lessimportantrulescanbe overwritten
by coachadvice.

This simple methodis successfuhs experimentg18] with our teamand foreign
coacheshav. Theseexperimentswere madeat the Carngjie Mellon University and
revealedthattheir coachcansignificantlyimprove the scoreof our SFLS-team Since
the changesnadeby the coachonly affect the rulebasethis alsoprovesthat our ap-
proachof declaratve agent-modellings promisingand that the performanceof our
teamcanstill beimprovedby specifyingnew rules.

8.4 Conclusion

Behavior specifiedin SFL is easilyandfastmodifiable. Also incorporatingcoachad-
vice is possibleandleadsto successfutesults. As experimentsy CMU showved,the
performancef ourteamis highly flexible anddepend®ntherulesin therulebaseSo
tweakingtheserulesshouldimprove our teamin thefuture.

Comparedo Clang,SFL is moreexpressve andrulescanbeformalizedmorecon-
cise. While we are positive thatthe languageSFL coversanything thata teamneeds,
theimplementatiorof a systemthatinterpretsSFL still offersmoreresearctopportu-
nities. Basedon the obsenationthatin both ClangandSFL therearemorecondition-
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thanaction-primitves,we believe thatin soccerthe knowledgewhenandwhy to ex-
ecutecertainactionsis crucial. Therefor morework shouldbe donein the selector
modulein orderto decidemore dynamicallywhich rulesare executed. This alsoin-
cludeshandlingcoachadvice more efficiently, sinceit is integratedwith a manually
fixed priority now, andbacktrackingof actionsif the effectorreportsthatan actionis
notpossible.

SFL is just oneway to formalize strat@gic behavior. Thereis no generalagree-
ment on what a strategy is and how it should be specified. The relatedwork of
COACH_UNI_LANG [14] shouldbe pointedout which formalizesstrateyiesin terms
of roles,formationsandtactics. Unlike SFL which is basedon situation-actiormap-
ping, it usesplayertypesby settingparametersThus,its notionof strat@y is different
thanthatof SFL, which usest synorymousto behaior.
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Chapter 9

Testing,Debugging and Tuning

9.1 The Gauntlet

9.1.1 The purposeof a gauntlet

During the developmentof our RoboCupteamwe encounteredhe problemof evalu-
ating changesn the code. A developer(or groupof developers)would implementa
new feature,redesigna stratey or fix a bug andthentestthe new teamat his home
computeror onacoupleof computer®onthecampusTheproblemwasthattheresults
we got from differentgroupswerenot comparable©On somemachinesve would lose
to teamA. On anothemachinewe would win. Anotherproblemweretherandomfac-
torswhich areinducedinto a RoboCupgameby the soccersener. Evenif you replay
a gamein exactly the sameconfiguration(codeand hardware) you get significantly
differentresults.To eventhis outyou have to run eachgamea coupleof timesandthen
work with the averageoutcome.

So we implementeda weekly (and later nightly), automaticallyrun tournament
(gauntletin our lingo). In this tournamentve took the latestreleaseof our teamfrom
therepositoryandsetit up againstanumberof otherRoboCupgeamswvhichwereavail-
ableontheinternet.We haddifferentconfigurationof ourteamandeachoneof these
configurationsadto play againstevery otherteam.This resultedn a numberof pair-
ingsandeachpairingwasthenrun five timesto try to reducesomeof therandomness.
Eachgamewasloggedby the logging mechanisnimplementedn the soccersener.
Theselogfilesweresared andprocessedWe createdvisualizationsof importantfacts
abouteachgameandsetup anumberof HTML-pageswhich shavedtheresultst

9.1.2 Designcriteria

First we neededa way to startgamesremote. This meansthatwe neededa program
whichis runonmachineA, startsa seneronmachineB, ateamon machine<C andD
andthentells the senerto do a kickoff. This programwould be usedfor the gauntlets
but alsohadit’s usesoutsideof them. If a developerwantedto seea game,he/she
didn’t have to dabblearoundwith threedifferenttelnet-sessionsAnothergoal wasto
have the programtransfertheteam-or sener-binariesautomaticallyto the machineon

10f coursethis wasall doneautomatically
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whichthey shouldrun. But this shouldonly happerif thelocal versionwasnewerthen
the existing remoteone (to reducetraffic).

Themaingauntletprogrammthenjust neededo startaremotegamefive timesfor
eachpairingit cameupwith. Thepairingswerecomputedautomaticallyby thegauntlet
programby scanninga directoryfor subdirectoriegontainingteam-binariesThis had
theadwantagethatif onewantedto changeheteamsof agauntletonehadonly to add
(or remove) anew teamdirectory Everythingelsewould be deducedautomatically

Anotherdesignconstraintwasthatwe hadto getinformationfrom the teamsand
the sener backto the gauntletprogram.Fromthe senerwe got informationaboutthe
coordinateof the ball in eachtime frame. We usedthis informationto plot a graph
usingthe X-axis asthe timeline andthe Y-axis to shov the X-coordinateof the ball?.
We alsowantedinformationaboutthe scoreand metainformationon the gamefrom
thesener. Metainformationis stuff like “which teamhastheball for how muchof the
game”,“how long doesthe goaliehave theball”.

To run the clientson the remotemachine we useda scriptto startthe eleven (or
twelve whenusinga coach)processeseededo run the team. Using a scripthadthe
addedadwantageof gettinginformation aboutthe stateof the clients. We usedthis
mechanismmainly to detectandreportsegmentatiorfaultsin our clients.

9.1.3 Implementation

The machinesve wantedto usefor our gauntletwereall reachablevia ssh. We could
thususethe featureof the standardssh client to executea programremote(just like
rexec , only encrypted).Theoutputof theremoteprogramwasechoedack- it became
the outputof the ssh -client. Sothe sener andthe scriptto starttheteamdidn’t have
to worry aboutsendingtheir informationacrossa network. They simply printedit to
STDOUT

To gettheinformationfrom the senerwe implemented trainer(or offline coach)
which collectedtheeventssentfrom thesener. It thenprintedtherelevantinformation
(ball position,scoreandmetainformation)to STDOUT The scriptthatstartedthe team
workedsimilar. It parsedheoutputfrom individual playersandwrote therelevantbits
(nopunintended)o STDOUT

All this datacametogetheron themachinerunningthe gauntlet(which wasdiffer-
entto the machinerunningthe sener andto the machinesunningeachteam). There
alodfile wascreatedor eachpairing (every logdfile containedhe datafor five games).
After thewhole gauntletwasfinished,the datawasthenvisualized.

The visualizationwas doneby a Perl-scriptwhich createda web pagefor each
pairing. The pagecontainedthe resultsfor the five gamesandfive graphsdepicting
theabove discusseatune. If therehadbeenary seggmentatiorfaultsin our teamthis
information would be given aswell. The Perl-scriptfurther createdindex pagesto
easilyaccessheinformation-pagesThenall thefreshlygeneratedHTML-pageswere
uploadedo aninternalwebsererandcouldbe accessedy all teammembers.

2This may soundconfusing but it just shaved a curve indicatedin which half (andhow far in thathalf)
theball hadbeenthroughouthegame.
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Figure 9.1: This is a screenshoshawing the visualizationof the first gameof the
pairing ATT CMU 2000versusour team(OsnaBallByters). This gauntlettook place
in preparatiorfor the 2001World Championship# Seattle.

9.2 Quality AssuranceManagement

9.2.1 Intr oduction

At somepointin a projectit becomesapparenthattherehasto be someway of con-
trolling the quality of the producedoroduct.Especiallyif thereare,say morethantwo
or threepeopleworking on a pieceof software,the needto have one(or more)persons
testingfor bugsand/ or logical mistakessoonarises. This sectionwill be concerned
with our experiencesvith ‘Quality AssurancéManagement{QAM).

The remainderof this sectionis organizedasfollows: | will give anoverview of
thetasksof quality assurancenanagemerdndthe generalprinciplesto adhereo first.
Thentherewill beasectionaboutthetoolswe usedin our project. A sectionaboutour
experiencesand difficulties with quality assurancenanagemenfollows, andlast but
notleastanoutlookonwhatwe could have donebetter
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9.2.2 Tasksand generalprinciples

The purposeof having someoneo testa softwareproductasawholeis twofold. First,
thereis someonavhosetaskis explicitly to testandevaluatethe software.As opposed
to the individual programmerwho may only testhis / her code,a quality assurance
manageoverseeshe developmentof the whole codeandthe integrationof new parts
thereof. Only if new codehasbeentestedfor its integrity andsidefectswith the old
code,will it bememgedwith themainbranchof the developingproject.

Secondthepersorresponsibldor QAM providesapoint of referencdor integrat-
ing new piecesf codein aorderedashion(esp.concerningsequentiality) If thereare
versionconflicts,e.g. whentwo programmersreworking on the samefile, QAM can
male suretheinvolved partiesare notified of the conflicts. Thatway they candecide
togetheron the propersolution.

Merging the codeof a groupof peopleworking on the samepieceof softwarecan
becomeatime-consumingask. Obviously it is alsonotenoughto codeandtestparts
of asoftwareproductonly, but thecompletecodehasto be evaluatedandtestedfor its
integrity. It is alsousefulto have astandardgrocedureof integratingnew codeinto the
software. For thesereasonghe ORCA projectdecidedon designatingsomeonesthe
responsibldor quality assurancenanagement.

9.2.3 Toolsand Procedures

A very usefultool for generalversioncontrol of a software product,which we used
extensvely, is CVS[1]. CVSis describedn section9.3. CVSis capableof handling
mostof the versioncontrol by itself. Becauset notifiesthe userof versionconflictsit
cannotresolhe, QAM canenteratthatpointandcoordinateheinvolvedprogrammers.

It is alsoadvisableo createdifferentbranchedor the developmentversionandthe
releaseversionof the software. Changegrom the developmentoranchshouldonly be
subsequentlyncorporatednto themain (releasepranchby the persorresponsibldor
QAM. Thatway the developerscantry out differentapproachesvithout changingthe
stablerelease.QAM canthenensurethat eachchangeis testedand evaluatedbefore
being integratedinto the release. This is especiallytrue for incorporatingmultiple
changedo differentpartsof the code whenit matteramostto provide for sequentiality
becaus®f possibleside-efects.

We alsodecidedto createa testingenvironmentsimilar to the actualcompetition
situationby settingup threedesignatedCsrunningRedHatLinux 6.2. We have made
the experiencehatalthoughit is possibleto run bothteams senerandmonitoron the
samePC, resultsmay vary greatly from gameto gameand differ by quite a mamgin
from the actualresultsin an ervironmentwhereteamsand sener are distributed on
different computers. We also usedthis setupfor further testingas describedn the
gauntletsectionof this documeni{seesection9.1).

Anotherdecisionwe madewasto extract certainparameterérom the actualcode
andto includethemin afile called‘orca.conf, similar to the Configurationfiles in-
cludedin the SoccerSerer or the CMU-Code. Thatway it waseasierto modify those
parameterandto testtheir effectsin thegauntlets.

9.2.4 Experienceswith QAM

This sectionwill describeheway we actuallyworkedwith quality assurancenanage-
ment. It turnedout to be a sometimesatherawkwardtask,dueto inexperienceanda
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sometimewery fun task,dueto seeingoromisingimprovementsn agentbehavior.

Actual day-to-day handling

Whendecidingto usea softwarelike CVS to handleversioncontrol, it is advisable
to make sureeveryoneinvolved knows how to handlethe system. This is especially
truewith respecto theUpdate-Code-Update-Comn@itycleasrequiredby CVS.Even
CVSis only asgoodasits users,andforgettingto updatee.g. before startingto work
sometimeded to ‘forgotten’lines of code. Sodid not rememberingo commitall the
files changed.It is of coursepossibleto commitall files at once,but sometimesve
didn’'t want that for reasonf e.g. differentcommentsor not intendingto commit
certainchangedecause¢hey hadturnedout to decreas@erformance Whenworking
with multiple brancheson the commandine, extremecareneededo be takenwhen
changingoranchegyuite oftenin a singlework session.
Organizingsequentiatheck-insis alsooneof the tasksof quality assurancenan-
agementEspeciallywhenit cameto deadlineglik etournaments)nultiple last-minute
changedendedio somevhatevadethoroughtesting. They wereoftenintegratedquite
fast,without properntestingbetweertheintegrationof the differentnew piecesof code.

Evaluation of games

In our project, QAM alsobecameesponsibldor preliminaryevaluationof the results
of the gamesplayed. Whethera featureimproved agentperformanceor not wasthen
usuallydecidedon a broadetbasis meaningusuallya decisionby all the programmers
working in that area. So QAM is primarily responsiblefor the quality of the code,
not the performanceyuality. Of courseit is virtually impossiblefor a singlepersonto
know aboutall the codeof a pieceof software. Therefore certainmoregeneralparts
of ouragentge.g.the SFL team,seesection8) wereleft underthe supervisiorof their
respectie programmers.

We usedtwo methodgo evaluatethe behavior of our agents Thefirst, andobvious
one, is to watch games. We usedthe FC Portugal2000team[2, 13] asour default
opponentWith the setupdescribeckarlierit waspossibleto watchthe behavior of our
agentaunderquite ‘realistic’ conditions.Secondlywe usedweeklyanddaily gauntlets
(asdescribedn 9.1)to gainanoverview of teamperformancegainsdifferentteams,
alsowith differentconfigurationdiles. Thiswasusefulto have abroadeibasisof game
resultsfor decisionsconcerningurtherneedsfor improvement.

Branching

Using the branchingcapabilitiesof CVS helpedus a lot. The SFL part of the code
was mainly developedin its own branchandlater mergedwith the main branch. For

the Playtree-\érsionof the DirtyDozen-Teamdifferentbranchedor offense,defense,
andcommunicatiorwereusedat differentstagesf the project. New approachesere

implementedandtestedn thosebranchedeforebeingconsideredor themainbranch.
If branchesadnt beenusedfor sometime it happenedhat memging codeturnedout

to becomparatiely time-consuming.

Shortcomings

We didn’t usebranchingas extensively aswe perhapsshouldhave. We shoulddefi-
nitely have hada separateeleasebranchin additionto our maindevelopmentoranch.
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Thisreleasébranchshould,in the bestcase pnly be usedby the persorresponsibldor
QAM, andvery cautiouslyat that.

Paying moreattentionto keepingbranchesup-to-datewould certainlyhave saved
a lot of time spenton memging them later We had problemswith the generalself-
discipline of committing changedcodeto the repository Especiallywith deadlines
looming, peopletendedto commit ‘improvements’on a ratherarbitrarybasis. Intro-
ducingatest-bedearlierthanwe did would have been jn retrospectie,a goodthing to
do. Thesameholdstruefor thegauntlets.

We alsofocussedoo muchontestingagainst-C Portugal2000becausehey were
the strongesbpponentandqualificationopponentBecausef the superiorabilities of
their agentswe weremostly concernedvith improving our defenseand neglectedthe
offense.We developedoffensive conceptsaandwerent ableto evaluatethemproperly
becaus@luringgamesurteamspentmostof its time in the defensve.

9.2.5 Conclusion

Ensuringthe quality of the software producedis an obvious demandfor ary serious
programming.In a domainlike RoboCupwhereperformancds measuredn arela-
tively straightforvardway it is clearthattheperformancejuality of thecodeis usually
putfirst. This doesnt eliminatethe needto ensurethe integrity and coherencef the
actualcode. Agentspreferablyrun without crashingor usingtoo muchof the system
andnetwork resourceslt is thereforeusefulto introducea formal way of quality as-
suranceThis canbedoneby designatingsomeonego performthe describedasks.We
foundthathaving a quality assurancenanagemwasdefinitely helpful.

9.3 CVS

In the ORCA-ProjeciCVS is usedfor versionmanagementit is atool to keepaneye
on differentversionsof eachprojectfile. It canbe usedto meme differentversionsof
thesamefile or to extracta patchfile of thedifferentversionsof thesamefile. Youcan
find amanualandotherresourcesinderhttp://www.cvshome.qy.

In our projectwe have madegoodexperiencesvith CVS, becausave oftenhadthe
problemthattheactualversionof our projectdid notwork andwith CVS we couldroll
backto aworking version.This alsohelpedusto locatea bug within 1 or 2 files most
of thetime. CVS alsohelpedusto tag specialversionsandto split the development
treeto have differentbrancheshatwereimportantto beimplementedput leadto anot
properlyworking versionin the meantime.

Nowadaysyou cant maintainsucha hugeprojectwithout usingversionmanage-
mentarymore. Even throughwe did not test other versionmanagementools like
velvetrose,CVS fitted to our needs pecauseét wasavailablefor free, you could get
differentGUI'sfor it, it is quite easyto use,stable,andavailablefor Linux.
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Chapter 10

Tourneys

“My father learned me oncethat making mistakesis not very clever.”

While thisis trueit is notalwaysfatalto make mistales.Making mistalesandnoticing

you did soletsyou grow. All peopleinvolvedin this projecthave never participated
in a RoboCupevent. Thusmakingmistaleswasto be expected.This chapteris about
whatwe learnedirom the “mistakes” we made.

10.1 RoboCup German Open2001in Paderborn

Onemajorpoint, thatbecameobviousimmediatelywasthatwe never sav asimulation
matchtheway it shouldlook. Thesetupin Paderborrincludedawell runningnetwork

of Pentium-1ll with 800Mhzto usefor the simulationcompetition. With several of

thesemachinesfor every teameverythingwent smooth. Up till thenwe had never

seena gamerunning at the speedit shouldbe runningat. Our computersat home
just werent fastenoughandthe network at the university is of coursenot designed
for andnot exclusive to RoboCupsimulationmatches.Of coursewe hadnoticedthat
somethingwas not running right, but the most shockingexperiencewas that speed
mattersa lot in the simulationleague.Even our teamplayeda lot betterunderthese
conditions. The setbackwasthatit didn’t improve nearly as muchwith theseextra

resourcesisthe opponentslid.

To build agoodteamin RoboCupsimulationrequiresawell tunedsystento testit
on. You needthe bestconditionsfor both your own teamandthe opponent.Without
it youwill notgetvalid results.The simulationleagueis highly timecritical. A couple
of millisecondshereandtherecandrasticallychangehe performancef singleagents
andthewholeteam.

Our experiencen Paderborrshaved us how importantit is to coordinatea group
of individualsto achieve a giventask. We weremakinglastsecondthangesn parallel.
Thatis in itself not a badidea,but it includesthe responsibilityof communicating.It
is terribly importantthatthe persorthatis startingthe teamknows which build to start.
By the time the conteststartedwe had several differentversionsof our team. Each
with differentbrandnew andolderfeatures Most of thenewer oneswereof coursenot
thoroughlytestedif they weretestedat all. We thoughtaboutthis matterbeforehand
andhada stableversionto fall backto, but therewasa majorbug thatwouldn’t allow
our agentdo score.This bug hadto befixedandit was. Thatof coursemeantthatour
“stable” versionwasnot on our CD but modifiedright thereon the contestcomputers.
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Severalof uswerehackingawayright next to eachother Everybodywasveryabsorbed
in whatever he or shewasdoingsonobodyreally knew whatsortof versionthe others
wereworking with or on. Thatway someimportantandsomeminor bugswerefixed
but nobodyknew of all of themandespeciallyif a certainversionfixed all of them.
Thisledto alot of confusionandof coursestress.

We alsohaddifferentstartingscripts. Oneof themmadeespeciallyfor the contest
andanolderone. The olderonedidn’t includethefile which heldall of theimportant
parametersOf coursean ourfirst matchdueto our confusionwe usedthewrongscript.
Theresultbeingour playersstayingin their fixed formationandnot going to the ball
evenif it wasjust a few metersaway. Major malfunctioninglike this resultsin big
stress.It wasour first tournamentnatchandwe didn’t lose becauseve codedwrong,
we lost becausaevhat we codedwasnt even being executed. An experiencedteam
would immediatelywork on somemeasurehat keepsthis from happening.Instead
of beingthe coolheadedrofessionalsve wish we were, we startedto freak out and
turnedon eachother

For ateamin ahostileervironmentprovidedby a competitionit is of unrivaledim-
portancethatthe teammembersanrely on eachotherandsupporteachother There
are always conflictseven conflicts of personalnature. Theseconflicts have to be re-
solved or put asidewhenit comesto gettingthe job doneasa team. Talking abouta
hostileervironmentis not really appropriatevhenit comesto RoboCupcompetitions.
Oneimportantthing we learnedin Paderbornwasthat this really is a community of
peopleworking on problemsin the samearea.The competitionis of courseimportant
andcompetitive. If you loseyouloseandyou're out of the competition. Thatdoesnt
meanthatyou're out of the communitythough.

10.2 RoboCup2001Seattle

The secondtime we got into contactwith the communitywaswhenwe attendedhe
Worldchampionship Although Paderbornwvasinternationalit wasmainly Europe.In
Seattletherewas Europe,America, Asia and Australia. And maybemore important
thanthe variety was the numberof peoplethat attendedhis event. Therewerejust
so mary of them. Everybodywas involved in one of the leagues. Therewere 44
simulationteamswhich meantyou had enoughpeopleto getto know without ever
talking to anyonefrom anothedeague.Therewasof coursesomeinteractionbetween
leaguesbut for the main part the leaguesstuck to themseles. Therewere enough
internalproblemsto solve.

It wasnot just mary anddifferentpeople. It wasalsoimportantpeople. People
you know by namesrom paperor because¢hereon thecommittee At first you stand
thereand starein awe at theseimportantpeople,but after a while you are getting
problemswith the systemandyou have to go talk to them. The big surpriseis that
they treatyou asanequal. They treatyou assomebodyhatis advancingthe RoboCup
community This is anexperiencethat cannotbe madewithout goingto gatheringsas
thisone. Cuttingedgeresearcherandscientistgight therein thesameroom,thesame
competitionand unbelievably socially on the samelevel asyou are. By sayingthey
treatyou asequalsdoesnot meanthatthey talk to you asif you hadgonethroughthe
sameextendof learning,researctandRoboCupexperienceasthey have andindulging
in out of this world terminology but ratherthat they talk to you as someonewho is
interestedn the samethingsyou are. They arehapyy thatyou arethere thatthereare
morepeoplelike them. Trying to achieve new thingsin RoboCup.

61



Oneof theimportantpeoplewasGal Kaminkaa membetrof the organizationcom-
mittee. He held a really goodtalk aboutwhatit meango do science.He stressedhe
themeof this yearsRoboCup:“Fun competition.GreatScience.(tm)” Oneimportant
pointthathetriedto bring acrossvasthe differencebetweerdoingresearctanddoing
science.lf you find a solutionto a problemandtry it andit works very well, but you
don't tell anyonehow you did it, you area researchebut no scientist. An important
partof sciences telling peopleaboutwhatyou aredoing. If you comeup with some-
thing thatyou think is new, checkthe literature. The chancesareincredibly high that
somebodyalreadytried somethingvery similar. If you can't find anything askpeople
working in thatfield andthey will pointyou to the literature. Gal really stressedhis
point (“Thereis alwaysliterature!”). Take a goodlook at whatthe otherpeoplehave
beendoingandwhatthey found out. Compareyour resultsto theirsandshav whatis
different.If somethingyoudo doesnt work outtheway you expectit to, try to find out
why it didn’t work thatway. If somethingdoesnt work at all try to find outwhy and
mostimportanttell peoplewhateseryoufind out. If you dothatyouaredoingscience.
In sciencdt is importantto tell people.
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Chapter 11

Conclusion

11.1 Achievements

The overall succes®f the ORCA-projectis obvious. Despitethe factthatnoneof the
studentmembershad experiencewith a projectof this size or evenimplementingin
C++, a runningand complex multi-agent-systemvas developed. It took partin the
GermanOpenandRoboCup2001,sotheproject’s qualificationis undeniable.

Studentprojectslik e this onenot only aim at achieving the given projectandindi-
vidual goal, but alsoaim at improving and acquiringsocial skills that are neededor
workingin aprojectof areasonablsize.Lessonsverelearnedn projecthandling.e.g.
time schedulesconflict managementresentationsandjoint software development.
Severalmethoddor quality assurancandworking plansthatareusedin compaly or
academigrojectswereused.Also thestudentmembergotfamiliarwith differentsci-
entific methodsandtools. The experiencesiravn from this projectwill be usefulfor
future projects,not only for the ORCA membersput hopefully alsofor otherstudent
projectsthatmightlearnfrom our experienceslescribedn this documentatioin order
to avoid the mostprominentpitfalls.

Although this studentprojectwas plannedto last only one year thereare plans
to continueit. Throughoutthis paperseveral challengedhat canbe worked on were
described.

11.2 Acknowledgments

During thelastyearwe hada lot of fun andhadthe opportunityto really getinvolved
in theRoboCupcommunity In orderto beableto do thiswe needed lot of resources.
Fortunately we recevveda lot of help. The ORCA projectwould thereforethankthe
following:

¢ theUniversitatsgesellsbaft Osnabiick for their supportandsearcHor sponsors.
They madeit mucheasieffor usto afford thetripsto PaderborrandSeattle.

o thelnstitut fur Semantisiee Informationsvearbeitungnot only for helpingusto
goto andstayin Paderborn

¢ theVerkehrsveein Stadtund Land Osnabiidk, e.V. for the Seattlesupport
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¢ the Studentenwerdsnabiidk not only for the shirtsthey gave us.

¢ the studentsof the University of Osnabrueckepresentedhroughthe student
parliamentfor helpingusgoto Seattle

¢ theRolind Brauei for sponsoringis

But this all would not have beenpossibleif it hadnt beenfor the two peoplethat
supportedisthemost:

e Prof. Dr. ClausRollinger

o Wilfried Teiken

Theircontinuoushelpandencouragementasby farmoreimportantto usthanary
monetarysupportcouldhave been.
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Appendix A

Debug-AP

A.1 Intr oduction

For deluggingpurposesve includeda Debug-API which you may usewhenworking
with our code.We give ashortdescriptionon how it works.

A.2 Basics

The Debug-APlis definedin the utils.C  andutils.h  files. Especiallyutils.h  is
importantbecausét holdssomeimportantdefinitions.
If youwantto dehug somethingyou canusethe MAKELOGnacro:

MAKELOG((debug_leve |, debug_facility, message))

Dependingon whetherthe dehug flag is givenat compilingtime (-DDEBUG the macro
will expandto adehuggingcall. MAKELOGieedghreeparameters:

1. debug _level anumberbetweerD and99
debug _level setsa level at which the messagewill be consideredor output
with O beingvery importantand 99 beingleastimportant. Throughthe levels
you cancontroltheamountof informationthatis supposeo be put out.

2. debug _facility describes binaryvalue
thefacility is the generalgroupof dehug information. In utils.h  we included
somefacilitiesalready

3. message thedelug string
themessagés constructedimilar to stringsfor printf

Whenthe codeis compiledwith the delug flag setthe client may be startedwith
dehug options.If no optionsaregivenor if someareleft outthe defaultvalueswill be
used:

e debug-fac thedelugfacility asabinarynumberor a string
defaultvalue:DBG_ANY
if the binary numberis in the setfacility all entrieswith that facility will be
shawvn. Possiblestringsare
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facility binary value

DBG.CMU 1
DBG_OFFENSE 2
DBG_DEFENSE 4
DBG_GOALIE 8
DBG_.COMM 16
DBG_COACH 32
DBG_TRAINER 64
DBG_FORM 128

DBG_SFL 256
DBG.OTHER 512
DBG_ANY 2<<30
DBG_ALL 0

TableA.1: delugfacilities

If morethanonefacility is neededhe sumof the facilities needgo be entered.
DBGANYwill beusedif no facility is givenwhenthe client is started. DBGALL

will alwaysbeshownn. Thosetwo kindsof messagewill getthroughif nodehug

facility is handedto the client whenstarted. If you include a detug facility in

your startscriptthenonly DGBALL messageandyour chosemrmessagewill be
included.DBGANYwill notbeseerarymore.

e debug-lev thelevel asanintegerfrom Oto 99
defaultvalue: 99
if a given dehug entry hasa matchingfacility it is testedif the delug level of
thatentryis equalor lower thanthe setdehug level. With the default valueall
messageshouldgetthrough.

e debug-file  afilename
defaultvalue: STDOUT
if afilenameis giventhe dehug informationis storedin the file. Usually, the
messagearesendto STDOUT.

A.3 Examples

from our code

Sincewe usedthe Delug-APIwe includesomeexampleghatwill helpyouunderstand
how it works:
In Memory.C line 135thereis adehugline:

MAKELOG((40, DBG_OTHER,"adding  %d Tokens:" tokens.size()));

It is adehug messagéehatis not cateyorizedandthereforethe messagés putinto
the’'othermessages’.
In line 197 of the samedocumenit states.

MAKELOG((30,DBG_OTHR, "Warni ng, named directives not yet
supported."));

66



andin MemFormation.C it readdn line 353. Sinceit is aformationdehug message,
it is labeledDBG _-FORM'.

MAKELOG((1, DBG_FORM,"current  formation:; %s \n",
currentFormation->n ame));

Thesewill beusedasanexampleto explainthegeneraldehug procedure.

printing DBG_.OTHER messages

If thecodehasbeencompiledwith thedelugflagandif theclienthasbeenstartedwith

-debug-fac=DBG _OTHERhentheclientwill putouttheline ’adding..., and'Warning,
... but nottheinformationaboutthe currentformationsincethe lastmessagéelongs
to a differentfacility?.

printing all examplemessages

If the DBGOTHERaswell asthe DGBGFORMmessageareneededa differentfacility has
to be setwhenstartingthe client. To getthe new facility numberthetwo valuesof the
choserfacilitieshave to beadded.Accordingto thetableA.1 abore andthedefinitions
inutils.h  thevaluefor DBGOTHERSs 512andthevaluefor DBGFORMs 128. Therefor
thenew facility would be 640andis setby startingthe clientwith -debug-fac=640

refining output

Sincethe default level is 99 all messagem the examplewill appearsincetheir level
is lower then99. But if only high priority messagesare supposedo be considered
than adjustingthe detug level the client usescan help. The line -debug-fac=640
-debug-level=30  will leave the’adding... line from the first detug exampleline
untouchedsinceit’s level is above the new detug level.

separatefilename

Finally, if themessagearesupposedo bestoredin aseparatdile insteadof STDOUT
theline debug-file=  filenamehasto be addedwhenstartingtheclient.

A.4 Known Problems

As we wereworking with the Delug-API we discoveredthatit didn’'t handleobjects
too well. In orderto getthe valuesof ary given objecteachvalue hasto be putin
a string variable. So this seemgo be not ascomfortableascout << my.object <<
enld; .

10f course all DBGALL messagewill appeamaswell
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Appendix B

Terms

In this sectionwe will explain sometermsthatwe usethroughouthis document:

e basicskills

actionssentto thesener; right now, the ORCA clientuseshe CMU skills asit’s

basicskill.

e CMU

Carngyie Melon University; developerof the agentwe usedto baseour team

upon

e Dirty Dozen
teamnameusedduringthe Worldchampionshijpn Seattle

¢ high level skills

combinationsof basicskills; An action sore goal would be considereda high

level skill sinceit involvesmultiple basicskill actionlik e kick, dashor turn

¢ logfile analyzer

cananalyzegamesandgatherinformationfrom log files. Sinceit doesnt follow

agamein progresst hasmoretime atit’s disposato reachit’s conclusions.

¢ offline coach
seelogfile analyzer

e online coach

interactsthrough the standardcoachlanguageClang with teams. The Dirty
Dozenteamwasdevelopedo behighly compatiblewith theinformationcoming

from anonlinecoach.

e OsnaBallByters
teamnameusedduringthe GermanOpenin Paderborn

e positional terms

hereare sometermswe usedto describethe player’s positions. The valuesof

thosepointsarereadfrom thefile formation.conf

— HomePos

apointthatdescribesheplayersinitial position. It is thecenterof all other

positionalvalues.
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— HomeRange
acirclein whichtheplayeris freeto positionitself.

— MaxRange
a circle thatis usedto describethe maximumradiusa playershouldtake
into accounto calculateit’s actionsfrom

e SFL and SFLS
oneof ourteams coreelementds SFL andthe SFLScomponents:

— Clang
the standardcoachlanguagehat was agreeduponby the RoboCupcom-
munity

— effector
corvertstheselectedule to a senerconformaction

— matcher
determineswvhich rules are active at eachcycle dependingon the world-
state

— rule base
afile thatholdsthedifferentSFLSrules.It is readwhentheclientis started.
Throughouthe gameanonlinecoachmayaddnew rulesto thatbase.

— selector
choosesrule out of theactive rulesthatwerefoundby the matcher

— SFL
Stratgjic FormalizationLanguage;an extensionto the StandardCoach
LanguaggClang)thatis usedby our teamto describeeamstratejies

— SFLS
A systemthat runs stratgies that were specifiedin SFL. An example of
sucha systemis implementedn the’SFLS ORCA team.
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Appendix C

SFLS Rule Writing

In this sectionexamplesandmethodson how to write SFLSrulesshallbegiven. Please
refer to chapter8 for conceptsandto appendixD for the completegrammar Our

currentrulescanbe foundin sfl/behavior.sfl . If adifferentrulesetshallbe used
thisfile will haveto be edited.

C.1 GeneralConcept

As mentionedin chapter8 SFLSis basedon the standardcoachlanguageClang. In
orderto dealwith our needswve hadto extendthelanguagen orderto expresswhatwe
neededo implementa whole teams behavior. Still we maintaineda compatibility to
the original languagemakingit easyfor the coachlanguageo beincorporatednto our
rule basis.For informationon the standarccoachlanguageeferto chapter7.

C.2 Syntax

messageypes

We havefivedifferentmessagéypesthatmaybeusedo write rules:advice,  define,
info, meta, freeform . Forourclientwe only usedthefirst two astheothersarenot
socrucialfor aworking client. Insteadthey rathermirror the typesthat Clangdefines
andareleft for compatibilityreasons.

Thecoretype of messagés advice sinceit describesulesin termsof conditions
anddirectiveswhich make uptheclient'sbehaior. Generallyeachrule lookslik e this:

(advice
(TIME-TO-LIVE
(CONDITION)
(DIRECTIVEL)
(DIRECTIVE2)

(DIRECTIVEN)

)
)
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TheTIME-TO-LIVE setsthetime asanintegernumberthatthisrule shouldbeactive
measuredn RoboCupframesstartingattime 0. Useafigure > 6000to make surethat
therule will bevalid during the whole gameandeventualextra-times.A lesservalue
canbeusedto describeébehavior thatshouldonly be usedatthebeginningof thegame.
Yet, actuallythisis just for compatibilityreasonsThetime -conditionshouldbeused
to specifyintervalsthatdo not have to startat cycle O.

Conditions

In the CONDITIONpartaconditionis expressedhatis checledagainsthecurrentworld
state. If the two matchthe first DIRECTIVE thatrefersto the agentwill be executed.
Below areafew examplesof conditions:

true
avery simpleconditionthatis of coursealwaystrue

bowner our {5}
thisrule matchesf the playerwith the number5 in ourteamhasthe ball

bowner opp {5}
thisis trueif theplayerwith thenumbers in the opposingieamhasthe ball

bowner our {0}
if it is not crucial that a certainplayer hasthe ball the number0 is used. It
matchesf any memberof ourteamholdstheball

ppos opp {0} 1 11 (arc (homepos) 15 30 0 360))

this condition describesa situationin which 1 andup to 11 opponentsare in
aring (startingat 0 degreesand going around360 degrees)that hasan inner
diameternf 15 andanouterdiameterof 30 lengthunits

ballinterceptable our {(closestPlayerToBall our) }
if the playeron our teamthatis closestto the ball caninterceptthe ball this rule
matches

Conditionsmay be negatedby puttinganot aroundthe condition. Two or more
conditionsmaybe combinedwith anand or anor .

(and

(CONDITION 1)
(CONDITION 2)
(CONDITION 3)

Theequialentis truefor or .

Dir ectives

Eachdirectivein ourrulesetstartswith ado followedby our *. Thenatleastoneplayer
number situation-specifisymbol, variableor 0 hasto be given aswell asa specific
action.

1p

irectiveswith dont arenothandled.
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e (do our {0} (pos (pt ball) 100) )
if the conditionfor this directive is true the whole team (representedby 0) is
supposedo goto theball positionwith power 100.

e (do our { (closestPlayerToBal | our) } (interceptball 100) )
this directive makesour closestplayerto the ball interceptthe ball with power
100.

e (do our {(closestPlayerToBall our) }(bto ‘"their _goal" {s}) )

in thisexamplethe objectiveis to scoreagoal: ourclosesplayerto theball shall
shoottheball into theregiontheir _goal by methodscore.

The last exampleshoved a usefor the messageaype define  which will be dealt
with in the next section.

Defines

Throughdefinesit’s possibleto write down complex conditions,directivesor regions
onceandthroughthe givenlabelreferto it easilyelsavherein the rule basis. Instead
of writing the opponents goalregion eachtime a defineis used:

(define  (definer  "their_goal_zone"
(arc (pt 52,5 0) 0 18 0 360)
)

)

(define  (definer  "their_goal"
(quad (pt 525 15) (pt 52 15) (pt 52 -15) (pt 525 -15))
)

Now eachtime the region aroundthe opponents goal or the goalitself is needed
their _goal _zone ortheir _goal maybewrittenasseenin thedirective:
(do our {(closestPlayerToBall our) }(bto ‘"their _goal" {s}) )

Lik ewise, conditionsanddirectvesmay be definedandreferredto. Thisway it is
possibleto write down comple situationslike beingin the offenseor standardsitua-
tionslike a cornerkick onceandreferto themeasily

C.3 Writing rules
Whenwriting rulessomethingshave to be keptin mind
e priority rating
ascanbereadin chapter8 the client chooseshe currentrule by a priority num-
ber. The higherthe numberthe moreimportanttherule or the morespecificthe

rule. Soeachrule hasto beheadedy anumberwrittenin ' <’ '>’. Pleaseaefer
to thefile sfl/behavior.sfl from our releasedodefor examples.
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¢ useof defines
it hasalreadybeenpointedout thatthe useof definesis ratherpowerful andits
useis highly encouragedlt helpsto make therulesmorereadablendkeepshe
dangerof errorsdown.

e not all isimplemented
althoughthe grammarappearsathercompletesomefeatureshave not yet been
implementedThisis documentedn appendixD.
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Appendix D

SFL - grammar

by Timo Stefens
Thegrammarof SFL is basedon the standarccoachlanguaggClang)[6]. Differ-
encego Clangarecommented.

<MESSAGE>> <INFO_MESS>
| <ADVICE_MESS>
| <META_MESS>
| <DEFINE_MESS>
| <FREEFORM_MESS>

#Advice and Info messages

<INFO_MESS>-> (info  <TOKEN_LIST>)

<ADVICE_MESS>-> (advice = <TOKEN_LIST>)

<TOKEN_LIST> -> <TOKEN_LIST> <TOKEN>| <TOKEN>

<TOKEN>-> (<TIME> <CONDITION> <DIRECTIVE_LIST>)
| (clear)

<CONDITION> -> (true)

(false)

(ppos  NUMNUMTEAM UNUM_SETREGION)

(bpos <REGION>)

(bowner <TEAM><UNUM_SET>)

(playm <PLAY_MODE>)|

(and <CONDITION_LIST>) |

(or <CONDITION_LIST>) |

( <CONDITION>)

(

or
not

action  TEAM UNUM_SETACTION)# Some player in UNUM_SETexecutes

# ACTION. Not implemented in SFLS.

| (tme VALUE) # Servertime is VALUE (so may be
# a variable)

| (goal_diff VALUE) # Goal difference is VALUE

| (stamina TEAMUNUM_SETLEVEL)# Someone in UNUM_SEThas the
# specified  stamina level

| (eq VALUE VALUE) # Used to compare variables  and/or
# constants
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| (equnum UNUMUNUM) # Used to compare uniform  number
# variables
| (It VALUE VALUE) # less than
| (gt VALUE VALUE) # greater than
| (state  "STRING" "STRING") # value of the state is the second
# STRING used to maintain  states
# e.g. (state "ballStopped" “true”)
# 2do maybe second STRING should be
# replaced by VALUE?
| (ballvelocity VARIABLE) # ball has the specified  velocity
| (ballinterceptable TEAMUNUM_SET)# Some player in UNUM_SETcan
# intercept  the ball
| (ballcatchable TEAM UNUM) # intended for goalie, not
# implemented in SFLS
| "STRING"

<CONDITION_LIST> -> <CONDITION_LIST> <CONDITION>
<DIRECTIVE_LIST> -> <DIRECTIVE_LIST> <DIRECTIVE> | <DIRECTIVE>
<DIRECTIVE> -> (do <TEAM><UNUM_SET><ACTION>) |
| (dont <TEAM><UNUM_SET><ACTION>)
| (force <TEAM><UNUM_SET><ACTION>) # execute this rules as soon as
# encountered, ignore all other
# active rules

| "STRING"
<ACTION> -> (pos <REGION> [real]) | # Dash_power
| (pos <REGION>) |
| (home <REGION>) |
| (bto <REGION><BMOVE_SET>)|
| (bto <UNUM_SET>PASS_MODE_LIST) | # PASS_MODE
| (mark <UNUM>) |
| (markl  <UNUM>) |
| (markl <REGION>) |
| (markl <REGION> <UNUM>) | # position  agent between opponent UNUM
# and REGION
| (oline  <REGION>) |
| (htype <HET TYPE>)
| (state "STRING" "STRING") # saves states
# e.g. (state "ballStopped" “true")
| (interceptball [real]) # intercept ball with speed [real].
| (catchball) # intended for goalie, not implemented
# in SFLS
| "STRING"
<VALUE> -> integer | real | 'A-Z
<LEVEL> -> low | mid | high # Levels for Stamina and such

<PASS_MODE_LIST>-> <PASS_MODE_LIST><PASS_MODEY <PASS_MODE>
<PASS_MODE>> safe | risc | short | long # similar  to BMOVE_TOKEN.
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<PLAY_MODE>-> bko | time_over play_on

|
| ko our | ko opp | ki_out | kiopp | fkour | fk opp
|

| ck_our | ck opp
| ag_our | ag_opp
<TIME> -> [int]
<HET_TYPE>-> [int]
<TEAM>-> our | opp

gk our | gk opp | gcour | gc_opp

| both # not implemented in SFLS

| teamOfFastestPlayer  ToBall # situation-specific symbol

| teamOfClosestPlayer  ToBall #situation-specific symbol

| (teamOfFastestPlaye  rTo Pla yer TEAM UNUM) #situation-specific symbol

| (teamOfClosestPlaye  rTo Pla yer TEAM UNUM) #situation-specific symbol
<UNUM>-> [int(0-11)]

| 'A-'Z # UNUMVARIABLE

| (FastestPlayerToBal | TEAM) #situation-specific symbol

| (ClosestPlayerToBal | TEAM) #situation-specific symbol

| (FastestPlayerToPla yer TEAM TEAM UNUM) #situation-specifi ¢ symbol,

#first ~ TEAMdenotes the team of the resulting player,
# second TEAMand UNUMdescribe  target-player

| (ClosestPlayerToPla yer TEAM TEAM UNUM) #situation-specifi ¢ symbol
| (BestPassPartner TEAM UNUM) #situation-specifi ¢ symbol
# best passpartner of UNUMin TEAM
# TEAMand UNUMare ignored in SFLS
| (BestDeckPartner TEAM UNUM)  #situation-specific symbol
# TEAMand UNUMare ignored in SFLS
<UNUM_SET>> { <UNUM_LIST>}
<UNUM_LIST> -> <UNUM_LIST> <UNUM>| e
<BMOVE_SET>> { <BMOVE_LIST>}
<BMOVE_LIST> -> <BMOVE_LIST> <BMOVE_TOKEN3} <BMOVE_TOKEN>
<BMOVE_TOKEN>> p | d| ¢ | s
<REGION>-> <POINT> |
null)
homepos) # homeposition  of the evaluating(!) agent

arc  <POINT> [real] [real] [real] [real]) |
reg <REGION_LIST>)

'STRING"

<REGION_LIST> -> <REGION_LIST> <REGION>| <REGION>
<POINT> -> (pt [real] [real])

| (pt [real] [real]  <POINT>)

| (pt ball)

| (pt <TEAM><UNUM>)

| (

| (
| (
| (quad <POINT> <POINT> <POINT> <POINT>) |
| (
| (
R

mult <POINT> <POINT> # multiply  coordinates, used for
# simple coordinate-arithmet ic
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| (plus <POINT> <POINT> # similar  to point-relative,
# adds coordinates

<META_MESS>> (meta <META_TOKEN_LIST>)
<META_TOKEN_LIST>-> <META_TOKEN_LIST><META_TOKEN> <META_TOKEN>
<META_TOKEN>> (ver [int])

<DEFINE_MESS>-> (define  <DEFINE_TOKEN_LIST>)
<DEFINE_TOKEN_LIST> -> <DEFINE_TOKEN_LIST> <DEFINE_TOKEN>
| <DEFINE_TOKEN>

<DEFINE_TOKEN>-> <CONDITION_DEFINE>

| <DIRECTIVE_DEFINE>

| <REGION_DEFINE>
| <ACTION_DEFINE>
|

<PLAN_DEFINE> # used to collect several rules into one
# named tactic. untested in SFLS
<CONDITION_DEFINE> -> (definec  "[string]" <CONDITION>)
<DIRECTIVE_DEFINE> -> (defined  "[string]" <DIRECTIVE>)
<REGION_DEFINE> -> (definer  "[string]" <REGION>)
<ACTION_DEFINE> -> (definea  "[string]" <ACTION>)
<PLAN_DEFINE> -> (defineplan “[string]" <TOKEN_LIST>) # see above

<FREEFORM_MESS>> (freeform  "[string]")
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Appendix E

netif.C

deque<std::string> orca_udp_buffer(10  ); int init_udp

int wait_message(char  *buf, Socket *sock) {
if (receive_message(buf , sock) == 1) {

if(strnemp(buf,"(i nit "4 ) == 0)
init_udp=1,
return  1;
}

while(receive_mess  age(bu f, sock) == 1){
if(strncmp(buf,"(in it" ,4) == 0}
init_udp=1;
return  1;
Jelsef
orca_udp_buffer.pus h_back (bu f);
}

}

}

else for (nt i =0, i <100; i++) {
if (receive_message(b uf, sock) == 1){

if(strnemp(buf,"(i nit "4 ) == 0}
init_udp=1;
return  1;

}

while(receive_mess  age(bu f, sock) == 1)
if(stremp(buf,"(in it 4) == 0}
init_udp=1;
return  1;

lelsef

orca_udp_buffer.pus h_back (bu f);

}
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}

}
my_error("sleeping , waiting for message");
usleep(50000);
}
return  0;
}
()
int receive_message(ch ar *buf, Socket *sock) {
int n,servien
struct  sockaddr_in serv_addr
if(!(orca_udp_buffer empty )= =0) && init udp == 1){
Il fprintf(stderr,"ho le was vom puffer\n");

buf = (char *)(orca_udp_buffer froont () .c_str ();
orca_udp_buffer.po  p_front() ;

return 1,
}
servlen = sizeof(serv_addr) ;
n = recvfrom(sock->sock  etf d, buf, MAXMESG,0,
(struct  sockaddr *)&serv_addr, (socklen_t  *)&servlen);
()
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Appendix F

Authors

Section Author

1 AndreasG. Nie

2 Philipp Hugelmeer

3 AndresPggamandMarcoDiedrich
4.1and4.2 SeanButtinger

4.3 AngelikaHonemann

4.4 LeonhardHennigandPhilipp Hiugelmeer
4.5 Timo Stefens

5 AndresPeggam

6 Collin Rogawski

7 Timo Stefens

8 Timo Stefens

8.3.1 SearButtinger

9.1 Collin Rogowski

9.2and9.3 LeonhardHennig

10 AndresPeggam

11 Timo StefensandAndreasG. Nie
A,BandC AndreasG. Nie

D Timo Stefens

E Philipp Hugelmeyer
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