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Chapter 1

Overview

This documentis aboutthe RoboCupteamdevelopedby the OsnabrueckRoboCup
(ORCA) studentprojectat the University of Osnabrueck.Apart from discussingour
conceptswe will try to give advicesregardingour programsandwill give a reporton
ourexperiencewith theteam.

1.1 The developersand the project

Beinga studentprojectat theUniversityof Osnabrueck,Germany, our groupconsists
of ninestudents,namelyAndreasG. Nie, AndresPegam,AngelikaHönemann,Collin
Rogowski, LeonhardHennig,Marco Diedrich, Philipp Hügelmeyer, SeanButtinger,
andTimo Steffens. Also we hadtwo consulterson board:Prof. Dr. ClausRollinger,
andWilfried Teiken.

We startedout in October2000with a 1 year time period. During this time we
participatedin two tournaments:the GermanChampionshipin Paderborn,Germany
andtheWorld Championshipin Seattle,USA. It might seema little confusingbut we
useddifferentnamesat thosetournaments.During theGermanOpenwe participated
as’OsnaBallByters’ andfinally we wereknown as’Dirty Dozen’. Hencewe refer to
our teamdifferentlyin partsof this document.

1.2 About this document

1.2.1 How this documentis organized

Following this chapteryoumayfind:

� CMU
theCarnegie Mellon University(CMU) releasedtheir codeof their 1999World
Championshipwinning teamsothatothergroupsmayuseit andbasetheir de-
velopmentontheirbasicclient. Sincewewantedto focusonstrategy realization
andonlinecoachingwedecidedto usetheCMU codeaswell. In thischapterwe
describethechangeswe made.

� Learning
While planingthedevelopmentof ourclient it wasdecidedearlyonthatwewant
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to uselearningmethodsto improve out team’s skills. In this chapteraresome
wordsaboutthelearningroutinesthatwe triedandwhy they didn’t work for us.

� Playtree
Basedon theCMU codewechoseadecisiontreeconceptto realizeourstrategy
concepts.Thespecificsaboutthis methodaregivenin this chapter.

� Communication
Sincetheperceptiverangeof eachclient is limited communicationis themeans
to keepevery playeron thefield up to date.Thechapterdescribeswhatis com-
municatedandhow it is donein our team.

� Logfile Analyzer
The SoccerServer produceslogfiles for eachgamewhich canbe viewed after-
wards. Thereis a large library of pastgameswhich give an excellentway to
analyzedifferentteams.Our tool to do this is the logfile analyzerwhich is de-
scribedin this chapter.

� Online Coach
Our onlinecoachthatparticipatedin the 2001CoachCompetitionin Seattleis
introducedin this chapter. It explainshow it works andhow interactionwith
clientsis realized.

� SFLS
When the playtreeconceptreachedits limitations we had to comeup with a
new way of describingour strategies. In the processof doingsowe developed
theStrategy FormalizationLanguageSystem(SFLS)which is presentedin this
chapter.

� Testing,Debugging,and Tuning
As alwayswhena largegroupof programmersworkson thesamefiles thereare
boundto beconflicts.Somethoughtson thelong roadof developingandtesting
a functionalteamaregivenin this chapter.

� Tourneys
Finally, we sharesomeof the experienceswe gatheredduring the participation
of thetwo tourneys in thelastchapter.

Also we compiled an appendixin which we gatheredsomereferencematerial
mainlyaboutSFLS.

1.2.2 How to readthis document

Thisdocumentwascreatedasthefinal reportof aone-yearstudentprojectat theInsti-
tuteof Cognitive Science,Osnabrueck.Theproject-guidelinesdemandthat it mustbe
possibleto determinewhich projectmemberwrotewhich sections.That is why there
is anassignmentfrom sectionsto names.

Thechaptersareprettymuchself-contained.Soyoucanskipchaptersor readthem
in any order.

Thisdocumentwill giveadetaileddescriptionof our teamsothatourgeneralcon-
ceptsmaybecomeclear. In combinationwith our sourcecodeit shouldbepossibleto
try out own ideasandmaybebasea differentdevelopmenton our work.

5



1.3 ORCAs architecture

1.3.1 General information

As we developedour client naturallywe went throughsomechanges.The mostdra-
matic oneis probablythe introductionof SFLS(seeChapter8) to our client. In the
next chapterswe discussthedifferentconceptsthoroughlysoright now we just givea
broadoverview on how thetwo approachesdiffer.

1.3.2 Playtree

Theconceptof a playtreeis onethatis probablyusedby mostclientsin theRoboCup
SimulationLeaguetoday. It is basicallyadecisiontreewhichallowedusto constructa
functionalteamin ashorttime. Theteamusingtheplaytreeparticipatedin theGerman
Openaswell astheWorld Championshipin Seattleandis discussedin moredetail in
Chapter4.1

Figure1.1: Playtreearchitecture

The flow of information in the playtreeconceptis rathersimple: the messages
comingfrom the SoccerServer areprocessedandstoredin the World Model. Based
on thecurrentworld stateour playtreecomponentdecidedon a certainaction. It does
so througha seriesof if-then constructs.Finally, theactionis translatedinto a server
conformformatandsendby theskill codemodule.

1.3.3 SFLS

With the developmentof a standardcoachlanguage(Clang) we discusseddifferent
approacheson how we could integratethosemessagesinto our client. Throughthis
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processwe cameup with theStrategy FormalizationLanguage(SFL) which is anex-
tensionto Clangandwhich is realizedin theSFLSystemdescribedin chapter8. Since
theteamthatusedSFLSunderstandstheClangit participatedin the2001OnlineCoach
Competition.

Figure1.2: SFLSarchitecture

Differentfrom theplaytreeapproachtheclient hasnow two sourcesof input. On
theonehandtherearethedirectmessagesfrom theserver thatarestoredin theWorld
Model. On the otherhandare the (occasional)messagesfrom our online coach. In
fact,it doesn’t evenhaveto beouronlinecoach,sinceourclientworkswith any online
coach.All themessagesfrom theonlinecoach(if available)arestoredin theRuleBase.
This RuleBaseis alreadyfilled with theteam’s own strategic information.Theonline
coachmessagesarethereforean additionto the given strategiesandaresupposedto
improvetheplay of theteam.

Thecrucialcomponentof theSFLSarchitectureis theMatcher. It takesthecurrent
rulesandmatchesthemwith the currentWorld Model. Basedon thatmatcha rule is
chosenthroughsomeheuristicsby the Selector. Whena rule is selectedit is handed
to theEffector. This moduleinterpretstherule andconvertsit to theappropriateskill
which is transferredto theserverastheclient’sactionfor it’s currentturn.
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Chapter 2

CMU

2.1 Intr oduction

Thissectionbriefly describeswhyweusetheCMU-Code[19]. Youcangetthiscodere-
leasefromhttp://www-2.cs.cmu.edu/afs/cs/usr/pstone/mosaic/RoboCup/CMUnited99-
sim.html. It bringswith it somebasicfeaturesyou canusewith your agentimplemen-
tation.

2.2 What is the CMU Code?

It is thecodethattheteamof theCarnegie Mellon Universityusedin RoboCup1999.
Not really thewholecode,but only thebasicpartsof it. It givesyoutheconnectivity to
theRoboCupserver, aworld model,thatrepresentstheworld for theclient,abasictime
thread,basicactionslike kick theball, go to theball etc. andsomeexamplefunctions
for avery low level behavior.

You couldsay, thattheCMU codeis a framework thatwe usedto getaneasystart
to RoboCupandto focuson theinterestingpartsof RoboCup.This is quiteimportant,
becausenormallyyou would have to put quitea lot of effort into caringabouta con-
sistenttiming, client/server-communicationanda correctupdateof the world model,
which wouldkeepyou from focusingon theAI-partsin RoboCup.

2.3 What problemsdoesthe CMU Codesolve?

In the word modelall informationabouttheenvironmentis stored.Every time cycle
you get informationaboutwhatyou see,hearor sensewith your body, you storethis
informationto know whereyouropponentsandyour teammatesareandwheretheball
is. Youalsogetsomeinternalinformationto calculateyourpositionandyourstamina.
Theproblemis, that you get someof this informationwith noise,soyou don’t know
theexactpositionof everything.Anotherfeaturetheworld modelhasis theability to
keeptrackof how accuratetheinformationin theworld modelis.

TheCMU world modelprovidesa lot of functionsto checkthestateof theworld.
For examplethereis a functionto find anoptimalpositionfor interceptingtheball or
to checkwhetherit is possibleto catchtheball. While in RoboCupyou not only have
to careabouttheactualworld state,you alsohave to look into the futurebecausethe
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world changesso fast,that you can’t decidewhat to do on a fixed world model,you
alsohave to make assumptionsaboutthe future world states.Part of this is already
donein theCMU world model.

Thecommunicationwith theserver is alsovery important,sothatyou asa newbie
to RoboCupdon’t have to careabouttiming problemsin theclient/servercommunica-
tion or missingany servermessages.

Thetime threadtakescareof sendingthemessagesto theserver andupdatingthe
world modelat thegiventime. You canfind morepreciseinformationaboutthesteps
takenduringaworld modelupdatein atimecyclein theREADME file distributedwith
thecode.

Thebasicactionsarealsoquite importantwhenyou startwith RoboCup,because
they do not simply performthe actionyou want to do by putting togetherthe basic
actions,that you can sendto the server (kick, turn, dashand catchfor the goalie).
It alsocalculatesthe correctvalue to be sendandchecks,whethertheseactionsare
possible.

It alsocontainssomehelpfunctionsto calculategeometricfiguresandpositionson
thefield. Also therearesomesamplesfor very low level behavior to checkout how to
usethecode.

2.4 Which problemsremain to be solved?

Although this “framework” solvesa lot of tasksin RoboCup,quite a lot thingsstill
remainto be done. Thereis no communicationbetweenthe agents,so you have to
think abouttiming anda goodplanfor communication.

Thereis nohigh level planning,soyouhaveto think aboutthebehavior in different
situations.Youhaveto determine,whetheryouarein offenseor in defenseandhow to
behave in socalledstandardsituations,meaningfor examplewhetherto go to theball
andkick it in a freekick situation,run freeor do somethingelse.

Thereareno classesfor positioningandformation,which arequite important,be-
causetacticalbehavior in a game(e.g. goodpositioning,playing with off-side calls
etc.) is animportantskill in playinggoodRoboCupsoccer. You have to think abouta
situation-dependentpositioning.

2.5 Adapting the codeto the curr ent Server Version

Sincethereleaseof thecodesomethingswerechangedin theSoccerServer. You can
find a list of all changesto theSoccerServer in theCHANGESfile deliveredwith the
Soccer-Server sources.Our client wasadaptedto the SoccerServer 7.10, so further
changesarenot in thecodebase.Themajorchangeswehadto careaboutare:

� Heterogenousplayers- Beforeeachgame,the server creates6 differentplayer
typeswith different abilities in speed,kick range,kick power, precisenessof
kick, staminaetc..You have to find out thecorrectplayertypeof eachopponent
and storeeachteammatesplayer type to make assumptionsabout the future.
Sincethereis ahugeamountof informationinput,wedonotuseall information
sendto usby theserver.

� ServerCommunication- Therewheresomechangesin servermessages,thathad
to beparseddifferently. Therealsosomenew messages,thathavenotbeensend
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by earlierversionsof theSoccerServer.

� TheStandardCoachLanguage(Clang)- Since2001thereis a StandardCoach
Language,thatcanbeusedby OnlineCoaches.

� Time Threading- Eventhoughnot mentionedin theCHANGESfile explicitly,
following the heterogenousplayer messages,therewere somechangesin the
communicationbetweenclientandserver.

� ParameterValues- Somedefault valueschangedandtook an influenceon the
skills. For example,theoptimalkick wastotally changed.Youhaveto kick only
with full power in the right directingto get theoptimalaccelerationof theball,
while usingearlierServerVersionsyouhadto kick theball aroundyou to getan
optimalacceleration.This of courseleadsto a totally differentoptimalpassing
andgoalkicking skill.

In orderto makefutureimplementationsof heterogenousplayerspossibleweadded
an arrayof player typesto storethe differentplayer types. Also for eachplayerwe
couldstorewhich playertype it actuallyis. Sinceour onlinecoachdoesn’t make any
playersubstitutionandno guessesaboutthe opponentplayertypes,which shouldbe
doneby thecoach,becausehehasdatawhichhasnonoiseaddedto it by theserver, we
did notcheckouthow goodouradaptionof heterogeneousplayersis. Weonly checked
whetherthesystemworksatall with heterogenousplayertypes.

Quite a lot of thesevaluesareusedin the functionsthat make predictionsof the
world’sfuture,for examplewhois first to theball. To nothaveto changethewholeac-
cessto theworld model,weassumed,thateveryplayeris of thesameplayertypeasour
own playerwhich is somethingof a hackandratherrudimental.Still, this worksquite
well in mostsituations,but canundersomecircumstancesleadto misinterpretationof
theworld state.

To actuallyuseour codewith heterogenousplayersyou have to make changesto
the world modelandto the skills. You have to write a wrapperclass,throughwhich
yougetaccessto thevaluesof thedifferentplayersandyouhaveto write amodulethat
makesassumptionsaboutwhich playeris which playertypejust in caseyour coachis
not telling youandyoualsohaveto addthis to thecommunicationprocess.

We hada problemwith the timing andthe client/server communication.We are
not surewhetherit wasa problemof theUDP-protocolor whetherit wasa bug in the
RoboCup-server, but we did not get messagesin the right order. Our problemwas
thatwe did not get the init() messagesasthefirst responsefrom theserver (not all
the time). Sowe hadto storethemessagesandbring themin theright orderto avoid
missingany initial message.BecauseUDPdoesnotcarewhetheryouactuallyreceivea
message,youhaveto careaboutyourmessagestackin yourclient. Weusedadequeue
for theimplementation,which is a containerclassof theSTL of C++.

Thecodeexample(netif.C ) canbefoundin appendixE.
At first we tried to learnthenew skills which shouldhave givenusa betterperfor-

mancethantheCMU skills. TheCMU skills arenotthatbad,but they canbeimproved.
You canfind moreaboutour learningapproachesin the next chapter. Unfortunately,
we ran out of time anddidn’t have the time to improve the skills by hand. This is
certainlya taskthatremainsto bedone.
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Chapter 3

Learning

3.1 Moti vation

In formercompetitionsof RoboCuptherehave beenseveralapproachesto applyma-
chinelearningtechniquesto theRoboCupdomain. Most teamsin thecompetitionin
2000 in Melbournefocusedon improving the low level skills with help of machine
learningtechniques.Oneexampleis theteamKarlsruheBrainstormers[15] whoselow
level skills haveall beenlearnedusingreinforcementlearning.In comparisonto other
teams,this teamhadsignificantlybetterball handlingandinterceptionskills. Theteam
wasableto getto theball about10percentfasterandthey playedtheball with ahigher
accuracy thanteamswhich usedtheun-tunedhand-codedskills from thefreely avail-
ableCMU sourcecode.This resultedin muchlessball losseswhenplayingpasses.So
wedecidedto focusonrobustlow level skills first to build astablebasisfor ourhigher
level skills.

Anothermotivationfor theuseof machinelearningtechniqueswasour interestin
thefield of new AI, suchasartificial life, evolutionarycomputation,geneticalgorithms
andneuralnetworks.Wehadminimalexperiencesin implementingandexperimenting
with suchsystemsandwe wantedto improveour skills andgettheexperienceneeded
to successfullyapplythesetechniques.

3.2 ProblemStructure

As alreadymentioned,wefocusedonimproving thelow level skills. Thefirst two basic
skills weneededweregoto-ball andkick-ball . Thegoalstatefor thegoto-ballskill
is simply to get into a positionthatallows controlling theball. For thekick-ball skill
the goal stateis definedasa situation,in which the ball leavesthe kickablearea(the
areawheretheball is controllablefor a player)in a givenangleat a specifiedvelocity.
Thesetwo simpletasksareprototypesof mostproblemsthata playerhasto dealwith
in RoboCup.The playerhasto find actionswhich, from a given situation,leadto a
situationwhich satisfiesthe constraintsgiven by the goal statedefinition. Thus the
learningalgorithmhasto mapsituationsto actions.
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3.3 Potential Learning Methods

Our objective wasto find a machinelearningapproachthat is ableto mapsituations
to actionswith minimal knowledgeof the world. Our plan wasto specifygoal state
andsituationinformationtogetherwith a setof possibleactions.Thelearningsystem
shouldthenbe ableto find a solution to the problemwith this knowledgeonly. We
providedthesystemwith minimalknowledgein orderto avoid influencingtheprocess
of finding the optimal solution. This way thesystemshouldbe ableto find solutions
we didn’t think of before.This constraintforcedusto excludeall supervisedlearning
methods.Consultingtheliteratureleft uswith threedifferentlearningmethodswhich
wereableto solveproblemswith very little information[7].

� ClassifierSystems

� EvolutionarySystemsandGeneticAlgorithms

� ReinforcementLearning

It is commonto all threeof theselearningmethodsthat they merelyneeda reinforce-
mentsignal. Thereinforcementsignalis generatedby theenvironmentbasedon how
goodthe taskis solved. In our casethe definitionof goodcouldbe,how many steps
were neededto get from the startingsituationto the goal state. Individualsable to
solve thetaskin lessstepsreceivea morepositive reinforcementsignalthanindividu-
alsneedingmoresteps.

Classifiersystemsoperateon asetof rules.Theserulesconsistof two parts,acon-
dition partandanactionpart. If theconditionpart is satisfiedby a stimuluspresented
to the system(e.g. the situationdescription),the actionpart is executed.The action
partmayactivateanactiondirectly or sendanotherstimulusinto thesystemby which
otherrulesareactivated.It is possiblefor morethanoneruleto beactivatedin onetime
step.By alwaysselectingthefirst rule thatis active it is notguaranteedthatthis rule is
thebestrule possible.Herea smarterselectionmechanismhasto befound.A module
is introduced,to assigna fitnessvalueto eachrule. Thefitnessvalueis estimatedover
time. Every time a rule is activated,a small amountof the fitnessvalueis “paid” to
the module. After a goal statehasbeenreached,every rule involved in solving the
taskis rewardedrelative to how many stepsarestill neededafterexecutionof therule.
This way rulesleadingdirectly to a goalstategeta higheramountof fitnessthanrules
executedat the startof anactionsequence.By assigninga fitnessvalueto eachrule,
theselectionmechanismbecomesverysimple:If morethanonerule is active,therule
with the highestfitnessis executed.A rule setwhich is ableto solve a given task,is
generatedby introducingnew rulesusinga rulediscoverymodule,interactingwith the
environmentandassigningthe fitnessvalues. In a classifiersystemevery rule hasto
beevaluatedoncein every time stepandtherule setis not limited in any way. There-
fore it cannotbeguaranteedthat thesystemis ableto reactin a fixedamountof time.
Successfulapplicationof the learnedskills in a gamelike RoboCupis dependenton
in-time reaction,in our case100ms. That’s why we decidedto useanothermachine
learningtechniquefor learningtheskills. A methodwith a fixedresponsetime would
bedesirable.

As mentionedabove, anothermethodto achieve the mappingfrom situationsto
actionsis EvolutionaryComputationandGeneticProgramming.Thismethodis agen-
eral optimizationtechnique,so it canbe usedto optimizethe weightsof a neuralnet
thatchoosestheappropriateactionin a specificsituation.In this approach,theneural
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netis codedasavector, calledchromosome.Eachinformationcodingunit onthechro-
mosomeis calledagene.Fromrandomlyinitializedchromosomes,thefirst population
of neuralnetsis “grown”. In thenext step,thenetsaretestedon how well they solve
agivenproblem.With this information,thereproductionprobabilityis calculated,in a
way thatanindividual thatperformswell hasa high reproductionprobabilityandoth-
ershave a lower probability. After that,theoffspringis generated.Thechromosomes
of two individualsarerecombinedandperhapssomeof thegenesmutatedto form two
new individualswhosechromosomesthenconsistof genesfrom eachof theparentin-
dividuals,possiblymutated.Now thenew populationis testedagain,thereproduction
probabilitiesarecalculatedandsoon. After somegenerations,the individuals’ chro-
mosomesshouldconvergeandthe producedneuralnetsshouldbeableto predictthe
actionscorrectly.

Thelastmethodwe consideredasanalternative is TemporalDifferenceLearning.
In this ReinforcementLearningapproach,a functionapproximatoris trained,in a way
thatenablesit to predicttheexact lengthof thepathto the next goal state,givenany
situation. This is doneby training, for examplea feed-forward neuralnetwork with
back-propagation,whoseinput is thedescriptionof thecurrentstate,andwhoseoutput
is onevalue that representsthe stepsneededto reacha goal stateasa sumof fixed
per-step-costs.Thenet’sweightsareinitialized randomly. Thenthenetis trainedwith
thefollowing equation,

Q
�
st � at ��� Q

�
st � at ��� α � rt 	 1 � γminaQ

�
st 	 1 � at 	 1 ��
 Q

�
st � at ��

whereα is the learning rate and γ is a discountfactor. Q
�
st � at � are the predicted

resultingcostsfrom the situationst with the actionat to a goal state. Analogically
minaQ

�
st 	 1 � at 	 1 � aretheminimal expectedcostsfrom onetime stepin thefuture. In

otherwords,theactionat 	 1 is thebestactionin thesituationst 	 1. If thestatest 	 1 is
a goal statethereareno further costswhereasin a failure statethe costsareinfinite.
In this approachthedifferencesin time areusedto train thefunctionapproximatorto
predict the remainingcostsfor reachingthe goal. Temporaldifferencelearninghas
successfullybeenusedto solve complex continuousanddiscreteproblemsin various
domains.Additionally, wehadthechanceto askMartin Riedmillerfor experiencesand
problemsin temporaldifferencelearningbecausehe held a seminaraboutintelligent
robotcontrolling,includingreinforcementlearning,atouruniversity. Thuswedecided
to usetemporaldifferencelearningto learnthelow level skills.

3.4 Temporal Differ enceLearning

In this sectionwe describethe TemporalDifferenceLearningmethodin moredetail.
Thesimplestapproachin learningfrom temporaldifferencesis Q-Learningdeveloped
by RichardS.Sutton[20]. It is a derivateof valueiteration,known from thedynamic
programmingdomain. Valueiterationis a tablebasedapproach.For every possible
situationin theworld, thereis oneentryin thetable.In thebeginning,thetableentries
areall zero.Thenthetableis updatedevery time-stepwith thefollowing equation:

Vk	 1
�
s��� minaE � rt 	 1 � γVk

�
st 	 1 ��� st � s� at � a �

for all sεS, whereS is the setof all possiblesituations.The valueof the states after
one iteration (k+1) is the cost for a statetransitionplus the minimal expectedcost
for the resultingstate,with goalstateshaving no futurecostandfailurestateshaving
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infinite cost.Theupdatingprocessis guaranteedto convergeaftertheupdatingprocess
hasusedevery action in every state. It becomesobvious, that value iteration is not
tractablein alargestatespacewith ahugeamountof possibleactionsbecausethetable
growsproportionalto thesizeof state-actionpairs.

Let’s stepbackto Q-Learningwith a parameterizedfunction approximator. The
objective of this approachis to geta compactrepresentationof thevaluefunctione.g.
aneuralnetwork andto utilize thegeneralizationof thefunctionapproximatorfor con-
tinuouslearningtasks[21]. The first variantwe startedwith is the simplestvariant
of Q-Learningthat requireda completemodelof theworld J � � s� a� � which is a func-
tion thatmapsa situationandanactionontoa situationreachedby usingactiona� in
situations. Theequationto calculatetheQ-valuefor a stateis:

Q
�
s��� r

�
s� a� ��� mina� Q �

J � � s� a� ���
TheQ-valueof asituationrepresentsthecostarisingon theway to agoalstate.r

�
s� a�

arethecostfor eachstatetransition,in ourapproach,weassignedthesamecostto each
action. In otherdomains,it might be possiblethat someactionsproducehighercost
thanotheractions.In our caseall actionsaretreatedequally. Thetrainingprocedure
for thisfirst approachin pseudo-codelookslike this:

create set of training-situation s S
while Q(x) didn’t converge
{

choose training situation s randomly
while (s != goal state)
{

for all actions a
{

calculate s’ = Jˆ{*}(s,a)
calculate Q(s’)

}
select action a’ that produces minimal cost
update Q(s) with Q(s) = r + min_{a’} Q(J*(s,a’))
s = J*(s,a’)

}
}

As mentionedabove,oneof our learningtaskswasto reachthemoving ball in minimal
time. We tried to train a feed-forward neuralnetwork to find the correctaction in
eachsituationpresentedto the network as input. Sincethe coding of the situation
for the neuralnetwork seriouslyinfluencesthe possibility for the network to find the
correctparametersfor approximatingthevaluefunction,we adoptedthecodingfrom
theKarlsruheBrainstormers,who releasedtheir sourcecodeto provide analternative
basisfor startersin RoboCup.Werecognizedthatwith thissimpleapproachtheresults
werenot satisfying. The neuralnetwork obviously learnedin the first episodes,but
then the learningprocessdidn’t improve the action selectionany more. We found
out that the exploration resultingfrom the weight changeswasn’t broadenoughfor
learningthistask.After insertinganε-greedyactionselectionthelearningperformance
increased,but the behavior wasonly suboptimal. In somesituationsthe net selected
actionsthat resultedin a similar situationand not in a bettersituation. Even more
training episodesdidn’t improve the performance.In fact, this causedthe function
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approximatorto decreasein performance.We found many articleswhich dealtwith
the problemsof combininga parameterizedfunction approximatorwith Q-learning.
Most authorsmentionedthat if functionapproximationin Q-learningis achievedwith
a neuralnet insteadof a lookup-table,convergenceto a global optimumis possible
only by chance.Someof thearticlesprovidedalternativesto Q-learningwhoseresults
shouldbemorereliable.

3.5 Grow Support

Oneof thepromisingmethodswasGrowSupportdevelopedby JustinA. Boyan[3]. In
hispaperhepointsout thataniterativeprocesslikevalueiterationin combinationwith
a generalfunction approximatorcanleadto diverging results. He presentsa method
thatheavily makesuseof thegeneralizationof theapproximator, insteadof forcing the
approximatorto changethe parametersto directly fit the one-stepupdatesestimated
by an iterative process.That way the value function shouldbe approximatedmore
reliably.

Boyan’s methodis basedon rollouts ratherthanonestepupdates.Theserollouts
are costsof paths,generatedby following the greedypolicy given by the function
approximator. If the greedypolicy, from a given startingsituation, reachesa goal
state,theestimatedcostsarereturned.If thegreedypolicy doesn’t leadto a goalstate
aftera givenstep-count,infinity is returned.Thus,thecorrectcostfor thestateor the
misleadingof thecurrentpolicy is returned.If agoalstatehasbeenreached,thestarting
situationtogetherwith thecostcouldbeaddedto aset,calledsupport-set, onwhichthe
approximatoris trained.Giventhis idea,therestis straightforward.A setof situations
X, sampledfrom thecontinuousstatespace,is definedandinitially, thesupport-setis
empty. Next, the function approximatoris trainedon the support-set.Then if there
arestatesleft in X andthesupport-setdidn’t stopgrowing, rolloutsareperformedfor
every xεX a time. If a rollout wassuccessful,the situation-costpair is addedto the
support-set.Thegeneralizationof theapproximatoroptimally causesmany successful
rollouts in onetrainingepisodeby generalizingover a region of thestatespace.If all
xεX areprocessed,theprocedurerestartswith retrainingthefunctionapproximator. If
thesupport-setstoppedgrowing,or all previouslysampledsituationshavebeenadded,
the approximatorhasconvergedand the value function hasbeenapproximated.To
make this clearer:Hereis the main procedurein pseudo-code,given the support-set
SUPPORT, thesetof sampledpointsX andtheapproximatorFIT :

X := points sampled over the state space
SUPPORT:= {}
repeat
{

train FIT to approximate SUPPORT
for each state xi in X
{

c := argmin(a) [ COST(xi,a) + RolloutCost(NextSta te( xi, a),
FIT)]

if c is not infinite
add <xi,c> to the training set SUPPORT

}
} until SUPPORTstops growing or all point in X were added to

15



the support set

After implementingthis method,we trainedit on the task of going to the ball,
as describedabove in the context of temporaldifferencelearning. In our case,the
trainingprocedureinsertedonly a few pointsto thesupportset,andterminatedaftera
shortlearningphase.We thentestedthis approachwith largerneuralnets,becausewe
thought,thenetusedin thefirst runwasn’t ableto fit thetrainingdata,dueto it’ssmall
hiddenlayersize.Sincethetrainingrunswith largernetshaven’t shown amuchbetter
performance,we droppedthis approachandimplementedanotherone.

3.6 ROUT

The next methodof approximatingthe value function was the enhancedversionof
grow-support,ROUT[4]. Boyandevelopedthismethodonthebasisof thegrow-support
algorithm,to eliminatethenegativepropertiesof grow-support.Oneof theseunwanted
propertieswas, that in very large statespaces,the algorithmneededa lot of sample
pointswhich, oneafteranother, wereinsertedin thesupport-set.So,training in large
state-spacestook muchtime, evenif theproblemwasvery simpleto approximatee.g
with only a few of the points in the support-set.That’s wherethis methodfocuses.
Insteadof usingthe generalizationcapabilityof the function approximatorto addas
many samplepointsaspossible,thegeneralizationis usedto find pointsin thatregion
of the statespace,wherethe generalizationstartsto fail. Then for thesepoints the
correctvalueswereestimatedandthetrainingsampleswereaddedto thetrainingset.
With this technique,only thosetrainingsampleswereadded,which arelocatedon the
frontierof regionswheretheapproximatorpredictscorrectvaluesandregions,in which
the approximatorpredictsincorrectvalues.Thatkeepsthe trainingsetascompactas
possible.And in asuccessfulrun,theregionsof correctvaluepredictiongrow from the
goalbackwards.GiventhestartingpointsX thetrainingsetSUPPORTandtherandomly
initialized functionapproximatorFIT , thelearningprocedurelookslike this

SUPPORT= {}
repeat
{

for each state xi in X do
{

s := HuntFontierState(x, FIT)
add training sample <s, one_step_backup(s)> to SUPPORT
retrain FIT to fit SUPPORT
if s == xi then mark xi as ‘‘done’’

}
} until all start states are marked as ‘‘done’’

Theone-step-backupreferredto in thepseudo-codeis simplyafixedperstepcostplus
the expectedminimal cost. The procedureHuntFrontierStatebriefly describedabove
in pseudo-codegiventhecurrentstatex:

for each legal action a do
{

repeat up to H time
{
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generate trajectory T from x to termination, starting with
action a let y be the last state on T with Bellman
residual > epsilon if y not empty and y != x, break out of
loops and restart with HuntFrontierState(y, FIT )

}
}
// reaching this point, the subtree of x is deemed selfconsistent
// and correct
return x;

Even in this enhancedversion, the training didn’t succeed. After somesuccessful
episodes,the greedypolicy didn’t lead to goal statesanymore, with the result that
only a smallregion in thestatespacewasapproximatedcorrectlyandin otherregions
of thestatespace,theapproximatorpredictedmisleadingvalues.In thepaper, Boyan
only mentionedtheproblem,thatif theapproximatoris not capableof fitting thevalue
function, the supportsetgrows constantlywithout growing the supportregion back-
wardsfrom thegoal.

3.7 Results

Sincewe re-implementedour learningmethodevery time we realizedthat the task
wasn’t solvedsufficiently, wedidn’t spendenoughtimein collectingdataandanalyzing
it. Looking backwards,it would have beenbetterto analyzethe problemsin detail
to get a deeperinsight what kind of problemsoccurredin approximatingthe value
function in thedifferentapproaches.Thenwe possiblywould have beenableto solve
theseproblemswith help of literature. The way we worked wasmoreor lessa trial
anderrorsearchfor a methodthat learnstheneededskills without any problems.One
reasonfor that was that we didn’t expect, that implementingandusing that type of
learningrequiresa lot of experience.The lessexperiencethereis available,themore
time is neededto gain that experience.In our time plan we includedoneanda half
month for implementingand training the skills for our team. That definitely wasa
phasetoo short,becauseafterwe realizedthatwe won’t get a stablelearningsystem
or perfectly learnedskills within that period,we startedto implementother training
scenariosandeven searchedothermethodsto solve the given tasks,whereprobably
otherkindsof problemsoccurred.

3.8 Further Work

Furtherwork in thisdomainshouldincludethetopicmentionedin theprevioussection.
Theoccurringproblemshaveto beidentifiedby analyzingthedatacollectedduringthe
learningprocess.An excellentbookin whichvarioustechniquesfor analyzingdataare
describedin is [10]. Oneaim would be to useother function approximators,which
havebeenstudiedin moredetailandusedsuccessfullyin abroaderfield. Oneexample
wouldbealinearfunctionapproximatorthathasbeenusedin variousrobotictasks,the
CMAC. Tsitsiklis [22] mentionsin his paper, thatnonlinearfunctionapproximatorsin
combinationwith temporaldifferencelearningleadto divergingresultswhereaslinear
approximatorsconvergeto anoptimalsolution.

Anotherinterestingdomainin reinforcementlearningis the applicationof evolu-
tionary computingandgeneticalgorithmsto sequentialreinforcementlearningtasks.
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Therearemany new promisingapproachesin evolving neuralcontrollersthatfind so-
lutionsmorereliablethanthetemporaldifferenceapproach.

18



Chapter 4

Playtree

4.1 Intr oduction

Ourfirst approachto realizingtheagents’decisionmakingmodulewasto implementa
handcodeddecision-tree-likestructure,the”playtree”, in orderto havea runningteam
of reactive agentsassoonaspossible. The stepwiserefinementof the basicagents’
behavior promisedto be a goodway towardsgettinga deeperunderstandingof what
makesa goodRoboCupagent.

A decisiontree is a setof rules representedin a tree-structure.Nodesrepresent
questionsor conditions,queryinga particularsetof data(the input), while branches
leadingto nodesonthenext level arelabelledwith answersto thosequestions.Starting
at theroot nodeandansweringeachnode’s questionsalongtheway, thetraversionof
the treeeventuallyreachesa final node. Final nodes(leaves)arenot labelledwith a
questionbut with avalueor actionthatis regardedasthesystem’soutput.

In theplaytree,theinputconsistsof thecurrentstateof theworld modelandinternal
statevariables,while theoutputis givenin theform of actioncommands,i.e. calls to
highlevel skill functions.In addition,theagent’sinternalstatesmaybealteredatevery
point in thetree’s traversion,e.g. to avoid the repeatedevaluationof time consuming
queriesto the world modelor to realizethe executionof simpleplansin the form of
shortaction-sequenceswhoseexecutiontakesmorethanonesimulationstep.

Theplaytreeis implementedin theform of C-functionsthatcorrespondto its sub-
treesandconsistof conditionals(if...else, switch ) whoseconditionsarecalls to
world modelfunctionsandwhoseactionsarecallsto othersubtree-functionsor, on the
lowestlevel, callsto high level skill functions.

Eachplayerhasits own copy of theplaytreeandin every server cycle (simulation
step)calls themainplaytree-function,which leadsto a situation-specifictraversionof
theplaytreeandeventuallyresultsin theexecutionof therespective actioncommand.
Thus,theplayersarereactiveagents,i.e. mostof thetime they only chooseoneaction
to be executedduring the currentcycle on the basisof the currentstateof the world
insteadof pursuingany explicit goalsandplanningaction-sequencesto reachthem.

Due to the goal that eachplayer shouldbe able to take over eachpossiblerole
whenit is required,thereis only oneversionof theplaytreefor all players.All players
exceptthegoalkeeper, whohasanown goalie-subtree,theoreticallybehavein thesame
way when they encounterthe samesituation. The only aspectsin which two given
fieldplayeragentsdiffer aretheir internalstatesandtheir environmentswhich trigger
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thechoiceof aparticularaction.
Theideabehindthis designwasto build theagents’behavior in a bottom-upfash-

ion, startingwith roughdistinctionslike the currentplaymodeor whetherthe agent
is in ball possession,andchoosingsimplebehaviors like gettingtheball or kicking it
in a certaindirectionandthenrefining thebehavior stepby stepby replacingcalls to
moregeneralbehaviorswith moredetailedqueriesaboutthestateof theworld andthe
respective, morespecializedactions,leadingto a treethat is growing, i.e. branching
out moreandmore,with ourgrowing experiencesandskills in formalizingtheneeded
knowledgeaboutthedomain. In thetime neededto identify thecrucialsituationsoc-
curring in a gameandto formalizetheappropriateconditions,therequiredhigh level
skills canbedevelopedby a combinationof lower level skills or by meansof machine
learning.

Apart from its extensibility, theplaytreehastheadvantagethatits modularityfacil-
itatesthe independentdevelopmentof differentsubtrees.That way, differentpartsof
thebehavior canbeimplementedindependentlyandlaterbeadjustedto work together.

Thefigurebelow shows theroughstructureof theplaytree,thefollowing sections
of this chaptertake a closerlook at it, startingwith thepart that implementsthefield-
players’behavior andthenexplainingthepartthatspecifiesthegoalkeeper’sbehavior.

Figure4.1: A roughsketchof theplaytree.
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4.2 Formations

As the conceptof formations,i.e. the mechanismfor the strategic positioningof the
playerson the pitch, is importantfor the understandingof the detaileddescriptionof
the inner workingsof the Playtreethat follows in the next section,it will be briefly
explainedin thissection.

Onesolutionto theproblemof theteam-widestrategicalpositioningof theplayers
wouldbeto let eachagentdetermineastrategically optimalpositionin everyactioncy-
cle,takinginto accountthecurrentgamesituation,theteam’sstrategy andthepositions
of their teammates,probablyusingcommunicationto negotiatewith them.

Thissolutionhasthedisadvantagethatit is rathercomplicatedandthuserror-prone,
andthatit consumespreciousCPUtime.

In realsoccer, explicitly agreedformationsareusedfor thestrategical positioning
of the players,telling themwhereaboutto positionthemselvesduringcertainphases
of the game,e.g. defensive or offensive play in either their own or the opponents’
half. Formationsgive the teamthe ability to quickly reactasa whole on changesin
the game,provided that eachplayerknows his positionin the currentformationand
which formationto switchto in a givensituation.Theplayersonly haveto adjusttheir
currentpositionsaccordingto their role in thecurrentformationinsteadof reasoning
abouttheir strategically bestpositionsall thetime.

Anotheradvantageof using formationsis the fact that expert soccerknowledge
canbeeasilyformalizedby specifyinga setof formationsandtheruleswhento apply
which.

We implementedtheconceptof formationsby providing formationdatasharedby
all theagents,combinedwith a mechanismfor switchingthecurrentformationanda
behavior thatmakesintenseuseof thepositioningdatafoundin it. To enabletheagents
to sharethesamesetof data,it is, in theform of formationrecordswhosestructureis
describedbelow, externallystoredin a configurationfile which is readby eachagent
at thebeginningof its lifetime andwhichhasasyntaxthatfacilitateseditingformation
data.

A formationrecordsimplyconsistsof aformation-identifierthatuniquelyidentifies
theformation,andtenpositioningrecords,onefor eachplayeror role in theformation.

Apart from a position-identifier, positioningrecordshave threeattributes,asillus-
tratedin thefigure4.2on page22:

HomePosition is a point on thepitch that theagentregardsasits default position
andasa startingpoint for its individual positioning,which is basedon thelocal
situation.

HomeRange is theradiusof acircle aroundtheHomePosition.

MaxRange is theradiusof abiggercirclearoundtheHomePosition.HomeRangeand
MaxRangerepresenthorizonsfor someof theagent’sperceptionsandactions.

This more centralizedway of building formationsonly works if the mechanism
for choosingthe currentformationis the samefor eachplayerandis only dependent
onglobalinformation,i.e. informationthatis accessibleto eachplayer. To achievethis,
theskill setsareextendedby set current position(formation id,position id) ,
anactioncommandwhichcausestheagentto setits currentinternalpositioningdatato
thedatafound in the respective positioningrecordin therespective formationrecord.
At this stageof development,theposition id is simply theagent’suniform number,
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Figure4.2: Formationdata(shown for oneplayeronly).

sothattheonly thing theagentneedsto know is thecurrentformation id . Whenthe
global situationof the gamechanges(e.g. a switch from defensive to offensive play
takesplace),certainrulesin theplaytreethatonly dependongloballyaccessibleinfor-
mationtell theagentsto executetheappropriateset current position() -command.
As this informationis thesamefor all theplayers,this resultsin a team-widechange
of thecurrentformation.

Apart from theadvantagesmentionedabove, team-wideformationknowledgeof-
fers moreopportunities.Formationsgive the online coachthe power to strategically
interveneby simply switchingthe currentformationaccordingto global information
abouttheopponents’positionsor strategy.

Or the agentscan,for example,adjusttheir currentHomePositions accordingto
the ball’s position, so that the whole teamautomaticallyfollows the ball while still
building a formation. The resultingHomePosition s serve asa startingpoint for the
agents’own local decisionwhereto position themselveswithin their HomeRange or
MaxRange.

4.3 Strategy

To simulatea real world of soccerwe have tried to take over somestrategiesfor our
agents.Themainthingis theseparationbetweentheplayin theoffensiveanddefensive
play modes. An offensive play modemeansthat our teamcontrolsthe ball andby
contrastdefenseis thesituationwhenever theopposingteampossessestheball.

For thedifferentstrategiesin thesetwo situationswe alsohave to try to realizeall
ourknowledgeabouttherealsoccerthroughouragents.

Thefirst partof thissectiondealswith ouragent’sbehavior duringthetwo partsof
theoffensiveplaymode.Thereis adescriptionaboutthedifferentdecisionstheagents
make. After that themainactionsof our offenseis explainedin detail. Thenext part
illuminatesour agent’s behavior andits mainoptionsduringthedefensive play mode.
Furthermorethe detailsof the main actionsof our defenseis given. Thenthereis a
survey of the behavior whenthe teamis in the kick-off situations.This chapterends
with a conclusionaboutthe problemswhich we hadduring the developmentof our
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team.

4.3.1 Offense

This situationis divided into two partswhich describethe differentbehavior of the
agent. The first containsthe tasksfor the agentwhich doesn’t have the ball andthe
secondoneshows theplay of theballowner.

Agent Without Ball

Thebehavior of theagentdependson threemaindecisions.Thefirst optionchecksif
theagentis chosenastheballreceiveraftera pass.In this casehegoesto theposition
wheretheball is expectedandtriesto get it. Theinformationabouttheestimatedpo-
sition of theball andtheuniform numberof theballreceiverarecommunicatedby the
ballpossessor. Thereforethe playerwill know thathe will be the passpartner. Some-
timesthemessagesbetweentheplayersarelost sononeof theagentstake therespon-
sibility for thepass.Thereis analternativewherethefastestagentgoesto theball and
triesto getit. If thesituationof theagentis suchthatneitherof thetwo precedingde-
cisionsfit hemovesto apositionto avoid theopponentsin orderto give thepossibility
for apass.

Get Ball

Our agentusesthe procedureget ball() from the CMU-Codeto get the ball. The
criterionwhich actionis executedis themovementof theball.

If theball movesthentheagenttries to interceptthe ball. A functioncomputesa
pointonthewaywheretheball will beandtheagentwill goto thatposition.Otherwise
if theball doesn’t movetheagentwill go to thepositionwheretheball lies.

FreeRun

Which positionthe agentwill move to in orderto avoid the opponentsis determined
by anevaluationof differentpositions.A functiongetFreeRunPos(...) checksthe
numberof opponentswhichareonthewayfrom thecomputedpositionsto theposition
of theball. Theagentgoesto thepositionwith fewestopponentsbecausethis will be
thebestpositionwheretheballpossessorcanpasstheball to.

Theevaluationconsiderseight possiblepositionswherethe agentcango to. The
positionis a point which is

� on theendof thecircleof thehomerangeof theagent.

� betweenthehomepositionof theagentandthepositionof theball.

� betweenthehomepositionof theagentandthegoalof theopponent.

� thehomepositionof theagent.

� thecurrentpositionof theagent.

� onemeterfrom thecurrentpositionof theagent.

� betweenthecurrentpositionof theagentandtheballposition.

� betweenthecurrentpositionof theagentandthegoalof theopponent.
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Agent With Ball

If theagentis theballownertherearefour mainoptions.At first theagentlooksif there
is a possibility to scorea goal. If thereis no chancefor a goal thentheagentchooses
a teammatefor a pass.In casehefindsa suitablepasspartnertheagentcommunicates
the estimatedpositionof the ball andthe uniform numberof the playerwho will get
theball. Thenhekicks to thatposition.If thereisn’t a goodpasspartnertheagenttries
to dribbletheball in adirectionwheretherearenot toomany opponents.Sometimesit
is dangerousto dribbletheball becauseit is too easyfor theopponentsto get theball.
In thatcasetheagentkicks in thatdirection.Thiswill givestheteammatesachanceto
gettheball or at leasttheball will gocloserto thegoalof theopponent.

Goal Kick

Thereis aproceduregoal kick() thatchecksthepossibilityto scoreagoal.Theagent
only kicks theball towardsthegoalof theopponentif thedistanceof theagentto the
goalis equalor smallerthan19,5meters.

The goal line of the opponentis divided into 25 points with the samedistance
betweenthepoints.Linesbetweenthepositionof theagentandthesepointsaredrawn
andarecheckedif thereareopponentson them. Theagentkicks theball towardsthe
goal if thereis a line with no opponentson it. Thelinesarecheckedfrom theoutside
to theinsidesothereis achanceof agoodgoalkickinto thecornerof thegoalbecause
thechanceof thegoalkeeperto catchtheball is moreimprobablein thatcase.

Passing

In order to get a convenientteammatefor a passthereare two strategies. The first
strategy of the behavior our agentsis realized in the decisiontreeby the function
passpartner() and the secondonedescribesthe behavior our SFLS- teamusesin
thefunctionbestPasspartner(...) .

Figure4.3: DecisiontreeStrategy: Theballowneris on his own half.

The two strategiesarebasedon the samefundamentalidea. In order to find the
directiontheball will beshotinto theballownerorientateshimselfatpointsin thefield
or at the fieldline. Lines betweenthe positionof the ballpossessorandthe different
pointsaredrawn andafter thatarecheckedfor thenumberof opponentsthatarein a
conealongthelines. Thelineswith thefewestopponentsarecheckedfor thenumber
of teammateswhich arearoundthe lines. If thereis at leastone teammatethen the
positionof theteammate(or teammates)is projectedon theline.
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Figure4.4: DecisiontreeStrategy: Theballowneris on theopposinghalf.

Thereis a functionpositionPassValue(. .) which evaluatesthedifferentpoints
with threecriteria. The first one is to look at how many opponentsare aroundthe
point in a radiusof 2 meters.Thenext valueis computedfor thepositionof thepoint
comparedto the lengthof the field. That meansthe ideais to play the ball outwards
in the backof the field andinwardsfrom the middlelineon. The last criterion is the
distanceto the opposinggoal. Thesethreevaluesdeterminethe choiceof a point on
a given line andthus the teammate.After this is donethereis anothercheckof the
opponentsbut only up to the projectedpoint of the teammate.Thedirectionwith no
opponentsis chosenandtheball is played.Theteammatewhosepoint is projectedon
theline is thesuitablepartnerfor thepass.

Figure4.5: SFLSStrategy: Theballowneris on his own half.

Now, thedifferencebetweenthetwo strategiesareat first thepositionsof thebase
points.In thedecisiontreestrategy 15pointsareplacedonthefieldlinesattheopposing
sidewhich shouldhelpto find thedirection(fig. 4.3,Fig. 4.4). By comparisonin the
SFLSstrategy thepitch is dividedinto regionsin which thepointsarefixed(Fig. 4.5).
The regionsarethe seconddifference.Into which region the ballownerwill play the
ball is determinedby his positionbecausenot all regionsarejoined(Fig. 4.5).

Drib bling

To dribble the agentusesa procedurekick ball(...) from the CMU- Code. The
agentshootstheball a little in front of himselfandinterceptsit againimmediately. The
directionwheretheagentis dribbling to is chosenby thesamestrategy asthepassbut
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the line might not be freeof opponents.If thereis an opponentwho wantsto get the
ball theagenttriesto rotatetheball aroundhimselfsotheopponentcan’t getit.

ClearanceKick

A clearancekick is doneif thereareopponentsaroundthe agentin a radiusof two
meters.Thenit is moredangerousto dribble theball. Theagentkicks the ball along
thebestline. Thatmeansthe line alongwhich hewould dribblenormally. Theagent
usesthesameprocedurekick ball(...) but theshotis muchharder.

4.3.2 Defense

Therearefour maindecisionswhich determinetheactionto beexecutedby theagent.
Thefirst thing that theagentwill do is look for a messagefrom theonlinecoach.

It is possiblefor theonlinecoachto communicateanopponentwho theagentshould
cover. If thereis nosuchmessagethenthefastestagentgoesto theball andtriesto get
it. If theagentisn’t thefastestplayerthenhelooksfor anopponentto mark.

In a situationwherethereisn’t anopponentto cover for theagent(for exampleall
opponentsarecovered)thenhegoesto his homepositionandchoosesthebestpoint in
his homerangeto observetheball.

LookForBallFr omHomePos

If the agentis not responsiblefor an actionasto get the ball or to markanopponent
thenhemovesto a point which lies betweenhis homepositionandthepositionof the
ball. The point is situatedon a circle aroundthe homepositionso the distanceto the
homepositionis equalto theradiusof thehomerange.

Cover

ThefunctiongetOpponentToCover() is usedby theagentto choosehis opponentto
cover. An opponentwhich canbecoveredshouldbein themaxrangeof theagentwho
will cover. Soat first thereis acheckif thereareany opponentsin hismaxrange.

Thoseopponentsareratedaccordingby their currentposition. The valueswhich
determinetheopponentarecomputedby thefunctionopponentWeight(...) . There
arethreedistanceswhichareconsidered.Thefirst oneis thedistancefrom theposition
of the opponentto the homepositionof the correspondingagent. This value is the
smallestbecauseit is theleastimportant.Thenext valueis thedistanceof theopponent
to theball. Furtherthemostimportantvalueis thedistanceof theopponentto ourgoal.

Thenext stepis to control theopponentswhetherthey arealreadycoveredby an-
otherteammate.Thecheckbeginswith thebestopponent,thatis theopponentwith the
highestvalue.If noneof theopponentsarein themaxrangeof theagentthenhelooks
at theclosestopponentto our goalandwhetherheshouldbecovered.If that isn’t the
casethenhelooksat theopponentclosestto himselfandchecksif a teammateis near
this opponentor not.

Thereare threedifferent kinds of marking. The first one is to cover our goal.
This situationis realizedif thedistancebetweentheopponentto cover andthegoal is
smallerthan30 meters.Theagentthengoesto a point betweentheopponentandthe
goal. Ideally, thereis no possibility to shootat the goal. The secondcaseis to place
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the agentbetweenthe opponentand the ball, so, the agentpreventsa passfrom the
opposingballowner. If theagentdoesn’t know wheretheball is thenhegoesdirectly
to theopponent.

4.3.3 Other PlayModes

Thebehavior of theagentwhichwasdescribedsofarshowstheplayduringtheplay on-
mode. Of course,thereareothersituationsduring a gameof soccerwhich the agent
hasto master.

Kick off

The kickoff is doneby the player which is the closestto the ball and thereforethe
closestto thekick-off point. Mostly theagentwith theuniform numberelevengoesto
theball andpassestheball to theteammatewith theuniformnumberfive. It turnedout
to bethat thepositionof this playeris thebestto begin thegame.To kick theball the
agentusestheprocedurepass ball() from theCMU-Code.

Freekick, corner kick, kick in, offsidekick

For thesesituationsthe agentusesthe sameproceduremy kick tree() . Oneagent
goesexactly to the ballposition. To find a teammateto receive the ball after the kick
the procedurepasspartner() is used. In casethereisn’t a suitablepasspartnera
secondagenthasalreadygoneinto thedirectionof theball andstopped5 metersshort
of it. So,theagentwhowantsto playtheball hasateammateto safelyshoottheball to.
If theagentis neithertheclosestnor thesecondclosestto theball thenhetriesto avoid
theopponents.For this behavior of theagenttheproceduregetFreeRunPos(...) is
employed.

4.3.4 Conclusion

To realizeoursimulatedsoccerteamwehadto overcomesomeproblems.Transferring
thetheoreticalideasinto practiceturnedout moredifficult thanwe thought.

At first we underratedthe noisewhich the server introducesinto the game,e.g.
the deviation of the positionsof the playeror the positionof the ball. Often we had
trouble with the position of the teammatesor the opponentsbecausethey stoodon
a different position than we assumed.Obviously, for instanceto kick the ball to a
teammateexactly wasa difficult action. Furthermorethe possibility to computethe
positionsof theopponentsexactly didn’t exist, thereforethey wereagainandagainin
thewayduringa passaction.

Anotherdifficulty was handlingthe information aboutthe visibility becausethe
agentdoesn’t seetheplayeror theball if they aretoo far away from him or not in the
viewconeof theagent.So,theexactnessof theknowledgeaboutotherplayersandthe
ball decreasedgradually. In thosesituationstheagenthadto estimatethepositions.Of
coursethey aren’t exactthatway.

Theseproblemsareintroducedby theserverbecausetherepresentationof thegame
shouldbe realistic. To filter out the server-introducednoisein the informationabout
thegamerequiredmuchexperience.
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To find a goodstrategy, e.g. for passingtheball or for coveringanopponentwas
anotherdifficulty. We hadto testdifferentstrategies. To find a suitablepasspartner,
e.g.wehavefirst triedsearchingonthewholefield. Thatrequireda lot of computation
time becausetheballownerhadto considerall teammates.Anotherproblemwasthat
theagentpassedbackat thewrongmomentor a groupof agentsstartedpassingback
andforth to eachotherin front of our goal. So,theball seldomgot into theopposing
half andwehadto dealwith many risky situations.

Furthermoretherewereproblemswith all agentsgoing to the sameregion, e.gto
cover the sameopponentor to get the ball. This difficulty wassolved by the imple-
mentationof conditions,e.g. not going to the opponentif therealreadywereenough
teammatesarounda givenopponent.At first we didn’t considerthosesmall but very
importantaspects.

4.4 Goalkeeping

This sectionwill describethe agentof our teamresponsiblefor goalkeeping. It will
explain why we choseto divide the decision-makingpart of the code(playtree)and
why we createda playtreeof its own for the goalie. The remainderof this sectionis
organizedasfollows: Therewill bea shortintroductionon thetasksof thegoalieand
on why we madethe decisionto treat this agentdifferently. The next part will deal
with the knowledgeof the ball positionandwith watchingthe ball constantly. Then
wewill describeourpositioningandmovementconceptsfor thegoalie,payingspecial
attentionto theimportanceof thesetwo for goodgoalkeeping.Thelast two partswill
treatcatchingandhandlingtheball, andtherewill beashortevaluationof ourgoalie’s
behavior.

4.4.1 Intr oduction

Theagentwho is supposedto keepthegoalhasto betreatedsomewhatdifferentfrom
theotheragents.As in reallife, agoalkeeperin generalhastasksthatdiffer from those
of field players.Theobviousability givento this agentis of courseto executea catch.
That,andthis agent’smorespecializedhandlingof gamesituations,madeusawareof
theneedto createa separategoalieplaytree.This decisionevolvedin theearlystages
of theplaytreeprogramming.Subsequently, thetwo playtreesstill sharedsomeof the
features,but weredevelopeddifferentlyin critical areas.Theseareasincludewatching
theball, positioningtheagentandball handlingaftera catch.We’ll dealwith eachof
thesein thefollowing sections.

Ourplaytreeduringplay on situationsfollows thesegeneraldecisions:

� Checktheview width

� Try to catchtheball (or kick it away)

� Try to intercepttheball if it’s in ourown penaltyarea

� Try to intercepttheball if it’sa shot

� Findagoodposition

� Scanthefield
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Of thosegamesituationswherethe ball is resting,the only two really important
to the goalieare the onesafter he hascaughtthe ball or whena shotwent wide of
the goal. All otheronesareequivalentto the generalplaytreeof the otheragents.A
featurethat wasincludedin the codebut not usedwasthe possibility to evaluatethe
coachmessages.

4.4.2 Watching the ball

Evenmoresothanotheragentsthegoalieneedsto know exactly wheretheball is. In
critical situations,e.g.whentheball is in theown penaltyareaor closeto it, thegoalie
agentshouldwatch the ball constantly. Therefore,the first option consideredin the
playtreeis whetherto switchtheview focusor not. Narrowing theview focusis only
advisablewhentheball is verycloseto theagent.

We createdtwo routinesthattestwhethertheball is moving towardsthegoal.The
first, BallHeadingTowardGo al , testsfor generalball movementanddirectionthereof,
whereasthesecond,IsShot , evaluatesall situationsin which theball is moving in our
direction. IsShot thentakes into accountthe ball velocity andthe proximity of the
ball to our goal. It turnedout to beimportantto recognizeshotsquiteearly, asto have
enoughtime to reachthe interceptionpoint. But equallyimportantwasto avoid false
positives,becausethey ledto errantgoaliemovements,whichin turn ledto losingsight
of theball andbadpositioning.

4.4.3 Positioning and Movement

Importance of goodpositioning

In theRoboCupsimulationleague,it is especiallyimportantto payattentionto posi-
tioning. As in reallife, it decreasestheneedfor movement(andwith it lossof stamina)
andincreasesthechanceof interceptingtheball. Assessinggamesituations,andreact-
ing appropriatelyto ball position,ball speed,andplayerpositionsis animportantarea
of agentdevelopment.This is especiallytruewith respectto goalkeeping.If another
agentmisjudgesthevelocity of theball andfails to interceptit, thenin theworstcase
theopposingteamwill gettheball. If thegoaliefails to intercept,theresultis usually
a goal.

It is importantto be in a good position to catchthe ball in any gamesituation,
becausetheball speedcanbesomuchgreaterthantheplayerspeed.In thesimulation
league,you alsohave to take into accountthat thegoal is twice thesizeasin real life.
Thismeansthegoaliemighthaveto covertwicethedistance.If thegoaliefails to bein
a goodpositionbeforea shot,therewill never bea chancefor him to catchtheball in
time. Onecannotstressthis factorenough— eventhoughit might seemto bea trivial
reallife observation.

Movementconcepts

Theotherimportantfactorin goaliedesignis hisknowledgeof thepositionof theball,
asdescribedearlier. To ensurethatthegoaliealwaysknowswheretheball is, it seems
importantnot to move too much(becausethatmight involve turning the neckandso
forth). This wasachievedby integratinga movementthreshold,which madetheagent
ignoreminimalpositionchanges.
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Then,if the agenthasto move, he shoulddo so without losing sight of the ball.
That is, we let theagentmovebackwardif gettingto thenew positioninvolveda turn
greaterthanacertainthreshold.Of course,longdistancesshouldnotbecoveredin this
fashion,for theagentcannotdashbackwardsasfastasforward.

General positioning concepts

Obviously it is bestto position the goalie on a point betweenthe ball and the goal
line. To avoid moving too far to onesideof the goal, though,it is bestto make the
movementtowardsthe sidesof the goal moredifficult the further out the agentgets.
In FindGoaliePosition we usea line parallelto thebaselineandfive metersfurther
into the field to positionour goalie. An intersectionbetweenthe projectedball-line
with this 5-Meter-Line is computed.An exceptionto this rule is the casewhen the
ball crossesthe50-Meter-Line. Thenwe computeanintersectionbetweena halfcircle
aroundour goal and the projectedball-line. Finding a point doesnot meanthat the
goaliewill actuallymoveto thatpoint. Asmentionedbefore,marginalpositionchanges
areignored.

Situational positioning

During gameplaythis generalpositioningconceptis thedefault casefor goaliebehav-
ior. If a situationarisesin which the goaliedeemshimself to be the closestand/ or
fastestplayerto theball, heof courseleaveshis positionto intercepttheball. We also
experimentedwith conceptsfor positioningof thegoaliein caseheshouldcomeoutof
thegoal to interceptanopponentor to cover asmuchof thegoalaspossible.For the
former, we usedtheCMU ‘ShouldIComeOutToOpponent’ function.

4.4.4 Catching and handling the ball

Forcatchingtheball weusedtheCMU functiongoalie catch . Weexperimentedwith
aroutinethattriedto delaycatchingtheball (whenit wascatchable)for onemorecycle
andusingthegainedcycle for movementasto improvecatchprobability. Eventhough
theserver-sidecatchprobability is setto 100%,thegoaliecanmissthecatchbecause
his knowledgeof ball speedandball positionis inaccurate.Thuswe tried to make up
for thesemarginal errorsby trying to getevencloserto theball to beabsolutelysure.
Unfortunately, wewerenotableto proveor disprovethevalidity of thisapproach.

Sometimes,whena catchfails, it is still possibleto kick the ball during the next
cycle. We usedthisextensively to ‘get rid’ of theball.

After a catch,thegoaliehasa few possibleoptions.Becausetheagentcanusethe
move servercommand,hecanbeplacedanywhereinsidetheown penaltyarea.If there
weretoomany opposingplayersin thegoalie’svicinity, or theagentwasn’t ableto find
a passpartner, he moved againto the othersideof the penaltyarea. The goaliealso
waitedsometime (usually25 cycles)to give his teammatesa chanceto repositionas
goodpasspartnersandto regainstamina.

A similar situationthatbasicallyusesthesamecodeis thegoaliekick aftera shot
wentwideof thegoal,exceptfor thefactthatthegoaliecan’t move.

We oftenran into thesituationthatour goaliemovedto a spotquite far out in the
penaltyarea,kicked the ball andthenthe passwasintercepted.This usuallyled to a
goal againstus becausethe goaliedidn’t have enoughtime to get back to guardthe
goal.
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4.4.5 Evaluation of goaliebehavior

Watchingthe goaliewassometimesvery frustrating. Often,he misjudgedball speed
andheading,andfailedto catchtheball properly. This couldhavebeendueto insuffi-
cient information.Without a reliabledefense,thegoaliefrequentlyhadto handlevery
dangeroussituationsin which hedidn’t really have a chance.We didn’t usea routine
to committhegoalieto a certaincourseof action,but ratherlet him decideeachcycle
onhisactionfor thatcycle. Thisoftenledto seeminglyconfusedbehavior, astheagent
decidedononeoption,andonadifferentonethenext cycle. In thebeginningstagesof
ourprogramming,thegoalieoftenadjustedhispositionwith respectto theball, andin
doingsoturnedandlost sightof theball. This wasespeciallyharmfulwhenopponent
teamsusedcrossesin our penaltyarea.

4.4.6 Conclusion

This sectiondescribedour implementationof a playtreefor theagentwho is thegoal-
keeper. Thefinal versionis theresultof muchexperimentingandprogramming,in the
courseof which we changedthecodequiteoften. We cameto realizethat thegoalie
andhis defensemaybeneedto interactmore to improve the handlingof potentially
dangeroussituations.We alsosomewhatneglectedtheimportanceof keepingtheball
in sight.Wethink thatmostof thegoalie’serrorsweredueto insufficientor inaccurate
information.

4.5 Conclusion

Implementinga teamusingthedescribedplaytreeis straightforward. Partitioning the
playtreeinto modulesfor offensive,defensiveandgoaliebehavior provedto beuseful,
becausethis way peoplewere able to implementwith lessconflicts. Yet, thereare
severalshortcomings.Integratingcoachadviceinto theplaytreeis difficult. Also, even
small modificationshave to be compiledwhich is time-consuming.Also changesin
the codeareproneto result in errors. Due to the architectureanderror-handlingof
the CMU-codemany last-time-improvementsturnedout to causethe agentsto crash
becauseof missingchecks.In orderto understandtheoverall behavior of theagents,
onehasto skim throughseveralfilesandmany linesof code.

Theseshortcomingsareovercomein ourSFL-approachwhichis describedin chap-
ter8.
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Chapter 5

Communication

5.1 Intr oduction

In the RoboCupdomainagentsare able to communicateamongeachother. They
do this via the say -command.Therearerelatively strict limitations on what canbe
communicated.Basicallythemessageanagentcansendto otheragentsis a stringof
limited length(about512characters).Thisstringis alsolimited asto thecharactersthat
areallowed. Only alphanumericalcharactersandtenspecialcharactersmaybeused.
Thereis also a maximumhearingrangethat defineshow far suchan utterancecan
beheard.Every agentcanonly issueonesay-Commandpercycle. An evenstronger
limitation is dueto thefact thateachagentcanonly hearonemessagepercycle. This
implicatesthatanagentcanonly hearoneof his teammateseveryothercycle.

5.2 Sharing knowledge about the curr ent state of the
world

Communicationis possiblein RoboCupwhich leavesthe questionwhat to useit for.
Oneimportantaspectof theRoboCupdomainis incompleteandinaccurateknowledge
of theworld, which is dueto thesensorylimits of theagents.Thereforeit makessense
to usecommunicationto somehow overcomeor lessenthis problem.Sinceall agents
haveadifferentview of andontheworld they all havedifferentinformationin differing
qualities.

5.2.1 The protocol and the compression

Inspiredby the stronglimitations on messagesizeandalphabetwe choseto imple-
menta compressionmechanismthatallows for a maximumamountof informationto
be communicated.A little reflectionon the typesof information to be passedon to
otheragentsrevealedthatabouteverythingcouldbeexpressedusingnumbers.There
areintegers,floatingpoints,andbooleanvalues.Our compressionmechanismletsus
definethekind of numericalvalue,its range,andhow maybits its precisionshouldbe.
Thisway wecanput everyavailablebit to use(seeTable5.1).
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name type range precision
defense boolean 0..1 1bit
Unum integer 0..11 4bit
xCoordinate float -60..+60 10bit
yCoordinate float -35..+35 9bit
confidence float 0..1 9bit

Table5.1: Exampleswith typeof numericalvalue,rangeandprecision.

Eachagenthasits own messageobject. The messageobjectcanbe fed a string,
decodeit and updateits valuesaccordingly. And it can be asked to encodeall of
its valuesinto a string using our binary compressionalgorithm. The encodingand
decodingis donein sucha way that themessageobjectthatreceivesa messagestring
is thenfilled with theverysamevaluesasthesendingone.

5.2.2 The architecture and structure

Wedesignedthemessagestrictly object-orientedto consistof othermorespecificmes-
sages.This way the toplevel messagewould consistof a headermessage,two team
messages,a ball message,anda strategy message.Eachof thesemessagesis again
madeup of morespecificmessages.This next exampleshows wherein the message
structureto find thestaminavalueandits confidence.

Message(own team, opposing team, ball, strategy)

� header (time, sender)
� own team (11 mates)

– mate

– mate

– mate

� position (x, y, confidence)

� velocity (x, y, confidence)

� stamina (stamina, confidence)
� stamina (float 0..3500, 5bit)
� confidence (float 0..1, 9bit)

� neck angle (angle, confidence)

– mate

– mate

– mate

– mate

– mate

– mate

– mate

– mate
� opposing team (11 opponents)
� ball (position, velocity)
� strategy (formation, offense/defense, passmessage)
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5.2.3 Updating the world model fr om the message

To updatetheworld modelfrom areceivedmessageis nota trivial task.Therearetwo
trivial waysto dealwith an incomingmessage.You caneithercompletelyignore it
or believe everything. While completelyignoring it would renderall communication
useless,believing everythingyou hearis seldomlya goodidea.This would meanyou
ignoreeverythingyou alreadyknow. We thereforehave to think of a mechanismthat
decideswhich informationto keepandwhich informationto updatebasedon thedata
of themessage.

In our world model all data that is subjectto changedue to the dynamicenvi-
ronmenthasa confidence-value. This valuehasa rangeof zero to one . Whenever
anything is observeddirectly from theenvironmenttheaccordingconfidence-valueis
setto 1. In every timestepall confidence-valuesaredecreased.Thusolderinformation
hasa lowerconfidence-value.

Theseconfidence-valueshelpa greatdealwith integratingdatafrom themessage
into theworld model.All thedatain themessageis communicatedwith theaccording
confidence-values.To decidewhich datato keepwe canstartout with comparingthe
confidence-values. If both confidence-valuesare the samewe cantake into account
whotold us.Theheaderof eachmessageincludesthesenderandthetimethemessage
hasbeensent.With this informationwe canfind out wetherthesenderis closerto the
objectin questionandthereforeis likely to have lessnoisyview.

5.3 Communicating a plan

Communicationis not all aboutfactsandraw data. It canalsobe usedto coordinate
futureactionswith others.We did this andaregoing to explain how in thefollowing
section.As anexamplewearegoingto look at passing.

5.3.1 How to expressa plan in a message

Passingrequirestwo playersandtheball. Oneplayerhasto kick theball in away that
his teammatereceivestheball at a futuremomentat a certainposition. To inform the
teammatewhattheplanis, theplayerpassingtheball hasto tell who hewantsto pass
theball to andwherehe is going to kick it. Therestof theplan is of courseimplicit.
The teammatehasto know that he betterget to that positionandget the ball. The
variablesin this planareonly the uniform numberof the receiving teammateandthe
positiontheball is passedto.

Puttingthesetwo in a messageis no problemsincewe alreadyhave messagesfor
numbersand positions. For every messagea player receives he checkswetherhis
uniformnumberis in it.

5.3.2 Inf ormation lossand relaying

Of coursein RoboCupagentsdon’t hearevery message.Thereis a maximumhearing
rangewhich determinesover whatdistancetheagentscancommunicate.And maybe
evenmoreimportantonly thefirst messagethatreachestheserver is broadcasted(see
5.1). In world modelcommunicationthat is no big problemsinceyou canestablisha
protocolthattellseachagentin whichcycleit canbroadcastagain.Thiswayyouavoid
collisionsandcanmake surethateveryoneis heardat somepoint. In communicating
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plans like in the passingexamplethings can easily turn out to be too time critical
to be handledthis way. The worst casebeingan agenthaving to wait for over two
secondsuntil it is its turn to talk again. The agentcanof coursetalk no matterif it
is its turn or not. The problemarising is that thereis no way of telling whetherthe
messagewill get throughor not. To assurethis themessagehasto comein first. This
canbe easilyachieved by introducinga priority for messages.If a messagehasno
priority it waitsfor its cycleandthenormalcommunicationinterrupt.If amessagehas
a priority it is communicatedat once.This cycle andearly in this cycle. By doingthis
the messagehasincredibly higherchancesof beingheard. To make surethe player
thatis supposedto gettheprioritizedmessageactuallygetsit we introduceda form of
relaying. Any agentreceiving a prioritizedmessageitself sendsprioritized messages
for sometime. Includingof coursethecrucial informationof theprioritizedmessage.
Thesetwo simplemeasures(prioritizing andrelaying)increasedthespeedof messages
spreadingacrossthe playingfield tremendously. Without themit often took up to 12
cyclesfor the messageto reachits recipientwhile it only took 2-3 cycleswith these
measures.

5.4 Promisesof a communicationusingSFL

Thisbinarycompressionthatweareusingtogetasmuchinformationacrossaspossible
is of coursenot the only way to do communicationin RoboCup.Anothermethodof
communicatingwould be to sendwell-structuredrules. During thefinal phaseof the
project,whenweintroducedSFL,thethoughtcameupto justcommunicateSFL-rules.
By doing this the agentscouldclearly tell eachotherwhat to do in the languagethat
tells themselveswhat to do. They couldexchangemoreelaborateinformationon the
world. Of course,this would make it impossibleto transferasmuchraw datain the
samestring.

This is of coursecompletelydifferentfrom theway we usedcommunicationbut it
seemslike a train of thoughtworth to follow. The rulescould be integratedinto the
rulebaseassoonasthey areheardandthusmake the agentact in a desiredmanner.
Problemsthataresureto ariseare:

� how shoulda single agentcomeup with a rule that his teammatecannotbut
shouldknow about

� doesa teamthat exchangesruleshave somesort of hierarchythat determines
whoshouldlistento whom

� how shouldanagenttreata heardrule comparedto onethathasalwaysbeenin
his rulebase

Theseproblemsshouldnot deteranyonebut rathershow that this is an interesting
way to go. And of course,therewill bea coupleof importantquestionsthatarenot in
theabove list.

35



Chapter 6

Logfile Analyzer

6.1 Purposeof the Logfile-Analyzer

Thelogfile analyzer’spurposeis to gatherinformationfrom logfilesof pastgames.We
designedthe analyzerin hopeto find patternsacrossa numberof games.Our team
could then be designedwith thesefindings in mind (to mimic or counteractthem).
Startingwith our taskwe hadapproximately150logfilesfrom thelastWorld Champi-
onshipandthe lastEuropeanChampionship.Every logfile is abouttwo megabytesin
size.

6.2 The Logfile Analyzer’s Basis:TimeSlice

6.2.1 The purposeof TimeSlice

BecauseRoboCupis discrete,it hasa finite number(approx.6000)of framesdescrib-
ing eachgame.We designeda classwhich representssucha state.An instanceof this
classknows all importantfeaturesof onesliceof time in onegame.Hencetheclass-
nameTimeSlice. TimeSlicehastwo differentapproachesto save the dataof a slice:
anabsoluteandaregionalapproach.In theabsoluteapproachthecoordinatesof all 23
moveableobjects(two timeselevenplayers,plus the ball) aresaved. In the regional
approachthe field is divided into regions (the numberand the sizeof the regions is
configurable).Within this approachonly the numberof the region theobjectis in, is
saved.This resultsin discretevalues(overa smallvalue-space)for theobjects.

A gameis representedasa seriesof linkedTimeSlices.This makesit possibleto
computedataspanningmorethanonetime frame. Therearemethodsto “look into
the future”. This meansthata TimeSliceobjectknows in how many framesa certain
actionwill occur. Theactionsfor which TimeSlicedoesthecalculationsaregoalkick,
passandball-loss.

Thesetwo domains(positionaldataand“future” data)arepresentto beableto infer
tacticalinformation.Combiningthesedomainstheideawasto getruleslike “if player
A is at positionB andplayerC is at positionD therewill be (with a chanceof X%)
a goal in Y cycles”. To getsuchruleswe tried to usewell-known algorithms.These
algorithmsarediscussedbelow. But we first take a look at how to useour TimeSlice
implementation.
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6.2.2 UsingTimeSlice

TimeSlice is implementedas a C++-class. The main constructorgets all the data
to fill the underlyingdata-structures.The informationaboutthe moving objectsare
passedwithin the structuresplayerinfo_t and ballinfo_t which are definedin
TimeSlice.h . Therearemany get -methods1 definedto accessinformationaboutthe
object(like ballInLeftHalf , getPossesingTeam , etc.). Thesefunctionscover the
positionaldataof thetime framerepresentedby thequeriedobject.

To computethe“future” information,every TimeSliceneedsinformationaboutits
positionin thechainof TimeSlices.This is doneby giving theTimeSliceconstructor
a pointerto its precedingTimeSliceobject.Functionsto accessthis “future” informa-
tion are: getTimeTillPass , getTimeTillGoalkick andgetTimeTillLosingBa ll .
They returnthenumberof cyclesit will take till theassociatedactionwill take place.
The computationprocesstakes placein the constructorof the TimeSliceclass. Of
coursewhenyou constructa TimeSliceobjectyou cannotknow aboutthe future. So
the“future” informationis propagatedbackwhenit is encountered.Thismeansthatif
a TimeSliceobject,which coversa time framein which a goalkickhappened,is cre-
ated,the informationaboutthegoalkickwill besendbackto all slicesprecedingthis
one. So, in practice,oneshouldonly inquireabout“future” informationif thewhole
chainof TimeSlices(therepresentationof anentirelogfile) is constructed.

Thentherearefunctionswhich serializethedata,so it canbewritten to disk. The
usageof thesefunctionsdependson what you want to do with the output. E.g. the
functionsaveC5RegionalPassD ata savesthedatain a formatwhich canbereadby
C5.0 .

6.2.3 A tool which usesTimeSlice: readLog

Themainpurposeof readLog is to reada logfile from a RoboCup-gameandcreatea
chainof TimeSlicesfrom it. Then(dependingon theparametergivento readLog ) it
doessomenumbercrunchingandsavestheresult. You cangetusageinfo by starting
readLog without any parameters.Here’s an example: if you want to generatedata
readableby FOIL from thefile test.log youwouldcall:

./readLog -f test.log -x foilpass -X ../../FOIL6/foil6

where../../FOIL6/foil6 is thepathto yourFOIL executable.Thiswouldautomat-
ically readthelogfile, constructthechainof TimeSlices,computethevaluesfor FOIL
(via foilPassDribbleShoot ) andsendthevaluesto FOIL (via ananonymouspipe).

6.3 SOM

Thefirst ideawe had,wasto useaSOM2. We usedtheimplementationSOM_PAKwrit-
ten by the SOM ProgrammingTeamof the Helsinki University of Technology. We
usedthelatestavailableversionwhich was3.1. We wantedto useSOMsto clusterthe
informationwe hadin the logfiles. We hopedto getquantitive dataaboutsoccercon-
cepts(likeduels,massivedribbling,massivepassing,etc.).If wehadsuchinformation
we could build our teamwith that in mind. E.g. if we would have found that many

1methodswith a void argument-list
2Self-Organizing-Map
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teamsstoppassingoncethey camewithin 20 metersof theopponentsgoal,we could
havebuild our defensein a way to counteractthis.

Thegeneralproblemwith SOMsis thatyou cannotcalculatetheoptimalconfigu-
rationof thenet for thedomainit is to beusedfor. You have to run it severaltimesin
differentconfigurationsandseewhichonenetsthebestresults.

We alsohadtheproblemof choosingthe right featuresto representa time frame.
For thefirst runwechosethepositioningandfutureinformationto beusedfor cluster-
ing theframes.

We startedwith a net consistingof 90,000neurons(a topologyof 300x300) and
a randominitialization. We thanfed this netwith the logfiles from the World Cham-
pionships2000. Theproblemwasthat it took threeweeks(on a SunEnterprise4500
with two gigabytesof RAM) to train thenet.Thismeantthatour timescheduledid not
allow us to run testswith a multitudeof configurationsaswasinitially planned.We
only tried oneotherconfiguration:a net with 22,500neurons(a 150x150 topology).
Thisdid notgetthedesiredeffectandthetimewhichwasscheduledfor thispartof the
projectranout. Wenow think thatmaybewechosethewrongfeaturesfor representing
a time frame. But it is very hard(if not impossible)to chosea representationa priori
(i.e. without any tests). So this is anotherpoint wherewe would have gottenbetter
resultsif we wouldhavehadmoretime to try differentsetups.

Conclusion:We did notgetwhatweexpectedfrom SOM.But thiswasmainlydue
to theenormousamountof computingpowerneededto runthetrainingof thenet.This
meansfor us that SOMsmight be a goodideaif you want to solve similar problems
(gettinginformationfrom datawithout knowing what informationyou want exactly)
andhavetheappropriateamountof timeand/orcomputingpower.

6.4 FOIL

6.4.1 What it is

FOIL is atool whichgetsdefinitionsof datatypes(discreteor continuous)andinstances
of relationsconsistingof thesetypesasinput. Therearetwo typesof input relations:
positive andnegative. Theserelationscanbe seenasexamplesfrom an object-space
(thenegativerelationsareof courseexamplewhich arenot in theobjectspace).FOIL
now triesto find oneor morehorn-clauseswhich describesanobject-spacewhich in-
cludesall the positive examplesandnon of the negativesones. If it fails to find an
exactclauseit will try to approximate(minimizing thenumberof wronglycategorized
examples).

6.4.2 Why wechoseit

Wethoughtthatby usingourTimeSlicesasexamples,FOIL wouldbeableto generate
rulescoveringtheseexamples.We thoughtthatrulescouldbegeneratedwhich stated
mechanismsor tacticswhich hadn’t occurredto uspreviously.

6.4.3 What wedid with it

We tried to learnthreepredicateswith FOIL: pass,dribbleandshoot.We would learn
eachpredicatewith its own FOIL run. I will describein detailhow wegot theinput for
FOIL to learnthepasspredicate.Theothertwo weretakensimilar careoff.
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Thegenerationof examplesfor FOIL wasimplementedin theTimeSliceclassvia
the function foilPassDribbleShoo t . For FOIL, an example is a vector with ten
elements:thepositionof theball owner(x andy), thenumberof teammatesin a cone,
the numberof opponentsin that cone, the position (x and y) of the conesstarting
point3, thepositionof thenearestteammate(angleanddistanceto theball owner)and
thepositionof thenearestopponent(angleanddistanceto theball owner).Thestarting
point of the coneis thepositionof the passreceiver. The reasoningbehindchoosing
theseinformationswas, that the relationshipof opponentsto teammatesin a region
arounda happeningpassarevital to the successor failure of the pass(failuremeans
lossof ball ownership).

To analyzeagamewewouldgothroughthelogfile (via thereadLog tool) andgen-
eratea positiveFOIL examplefor everyTimeSliceobjectwith a timeTillPass equal
to zero. To get negative exampleswe assumeda closedworld assumption,meaning
that thereareonly threeinterestingevents:pass,dribbleandshoot.A candidatefor a
negativepassexamplewoulda positivedribbleor shootexampleandviceversa.

Beforepassingtheexamplesto FOIL they weredivided into actualexamplesand
testcases.If you supplytestcases,FOIL is ableto give you a plausibility percentage
for theclauseit generated4.

Theproblemswe hadwith this approachweredueto our datatypes.For theposi-
tionsweneededtwo floats.Floatsarepossiblein FOIL: they gounderthedatatypecon-
tinuous,but this datatypeis very sparselydocumented.We thoughtthatFOIL would
beableto calculatewith continuousdata.We envisionedpredicateslike

pass(A,B,MatesInCone ,O pponet sIn Cone,E ,F, G,H,I, J) :-
...
MatesInCone > OpponentsInCone
...

pass(BallOwnerX,Ball Owner Y,C ,D, E,F ,G, H,
NearestOppnentX,Near est OpponentY ) :-

...
BallOwnerX - NearestOpponentX > 2,
BallOwnerY - NearestOpponentY > 2
...

But that wasnot what FOIL generated.We got very complex predicateswith a
very low probability tag (most timesaround50%). Thereweremany floating point
constantsin theseclauseswhich madethemratheruseless:a rule which statesthata
passsucceedsif theballownersx-coordinateis 14.56195wasnotsomethingwewanted
to handto ourstrategy group5.

We then tried to get away from the continuousvaluesby discreetingthem. We
createdfour discreetdatatypesin FOIL. A datatypefor coordinatesrangingfrom -
52 to 52 with a stepsizeof two. A datatypefor player numbersrangingfrom zero
to eleven. A datatypefor anglesrangingfrom zero to 360 in stepsof five. And a
datatypefor distancesrangingfrom zero to 20 with a stepsizeof two. Every atom
hadto beuniqueoverall datatypes,otherwiseFOIL would compareapplesto oranges
(read: coordinatesto player numbers). We did this by prefixing eachatom with a

3theconelengthis configurable,but stayedthesameover all examplesfor aFOIL run
4Thepercentageof thetestcasespacewhich is coveredby theclause
5althoughsuchastrategy might beeasyto implement
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lettercorrespondingto thedatatype(a for angles,etc.).Becauseof thatwedidn’t have
numericalatomsanymoreandFOIL couldn’t useit’sbuilding comparisonrelations( � ,� , etc.).For this reasonwe specifieda “greater”-relationfor eachdatatype,by simply
statingall factscoveredby this relation.E.g. thedefinitionof greaterCoord for FOIL
lookedlike:

*greaterCoord(Coord, Coord ) ##
c52,c50
c52,c48
...
c50,c48
c50,c46
...
c-50,c-52

Theresultswegotwith thisapproachweren’t muchbetter. Usingtheabovemethod
onthelogfile of thefinalsof theWorldchampionship20006 wegotthefollowingclause
(with a probabilityof 58%):7

pass(A,B,C,D,E,F,G,H ,I ,J) :- A<>E.
pass(A,B,C,D,E,F,d0, H, I,J ).

An error rateof 42% is very badandthe clauseitself doesn’t say that much. It
meansthata passshouldoccurwhenthex coordinateof theballowner is differentto
thex coordinateof thepassreceiver (which is thestartingpoint of thecone),or when
thedistanceto thenearestteammateis zero.

6FCPortugalvs. Brainstormers2K
7<> means“not equal”
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Chapter 7

Online Coach

7.1 Intr oduction

Justlike in humansoccerit is usefulto have someoneobserve andanalyzethe game
from theoutside.Someonewho is not supposedto actasfastandasmuchin realtime
asthe playerson the field andwho canprovide advice. In the RoboCupsimulation
leaguea privilegedagentcan connectto the server in order to work as a so-called
online coach. The ORCA project implementedsuchan agentwhich is describedin
this chapter. The remainderof this chapteris organizedasfollows. Section2 gives
an overview aboutthe online coachin the RoboCupdomainin general. In section
3 the interfacelanguagebetweencoachand playerswill be described. The ORCA
implementationof a coachwill bediscussedin section4, section5 discussesthefirst
coachcompetition,andfinally section6 concludes.

7.2 The online coachin RoboCup

Theonlinecoachcapabilitiesarerestrictedto observethegameandcommunicatewith
the players[6]. Neverthelessit is a useful tool to improve the overall teamperfor-
mance[5, 17]. Thecoachreceivesglobalandnoise-freevisual informationaboutall
movableobjectsfrom the server. This makescoachesa valuabletool for gameanal-
ysis andopponent-modelling,becauseit cancommunicateadviceandinformationto
its players. To prevent coachesfrom micro-controllingplayersandthusspoiling the
distributedmulti-agentcharacterof thesimulationleague,its communicationis some-
what restricted. It can sendarbitrary free-formmessagesonly during breaksin the
game.Since2001it canalsosendmessagesin a standardlanguagein certainintervals
duringplay-onmode.An overview of this languageis givenin thenext section.

7.3 The standard coachlanguage

Thestandardcoachlanguageenablescoachesandteamsthatweredesignedby differ-
entresearchgroupsto work together. Becauseof this it is evenpossiblefor a research
groupto focuscompletelyon implementinganonlinecoachwithout having to put up
with creatinga team.
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Thelanguageconsistsof fivemessagetypewheretwo of themcontainmostof the
semanticpower. Theseso-calledinfo- andadvice-messagesarebasicallyrules that
describetheobservedbehavior of a teamor advicesabouthow to behaverespectively.
Thesyntaxof info- andadvice-messageslookslike this:

�
in f o TOKEN1 TOKEN2 ����� TOKENn �

and �
adviceTOKEN1 TOKEN2 ����� TOKENn �

Thetokensin bothmessagetypehaveexactly thesamesyntax:

�
TTL CONDITION DIRECTIVE1 DIRECTIVE2 ����� DIRECTIVEn �

TTL denotestheTime-To-Livewhichspecifieshow longa messageshouldremain
valid. CONDITION is a booleanexpressionconstructedof predicate-primitivesand
denotessituationsin which theDIRECTIVEsareactive. DIRECTIVEsfinally contain
info or adviceaboutactionsthata team,asetof players,or asingleplayerdoor should
do respectively.

In thecaseof advicetheplayerscanconsidertheruleswithin their decisionmod-
ulesanddecidewhetherthey follow thecoachadviceor ratherfollow theirown behav-
ior. An example:

(advice
(6000

(and
(bowner opp {0})
(bpos

(quad
(pt 40.0 15.0)
(pt 52.5 15.0)
(pt 52.5 -15.0)
(pt 40.0 -15.0)

)
)

)
(do our {5} (mark {11}))

)
)

This advicesuggeststhefollowing: Whenany playerof theopponentteam(0 denotes
all players)ownstheball andtheball’spositionis in a certainrectanglein front of the
goal,theplayerwith theuniformnumber5 is advicedto marktheopponentplayer11.

In the caseof info the playerscanusethe rules that describeplayerbehavior to
make their own inferences.Anotherexample:

(info
(6000

(playm ko_opp)
(do opp {9} (bto {10}))

)
)
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This messageinformstheplayersthat theopponentteamhasthe tendency to execute
theirkick offs by lettingplayer9 passto opponent10 (btomeansball-to). Theplayers
canusethis informationto updatetheir tacticsappropriately. E.g. they cantry to mark
opponentplayer10or focustheirattentionon interceptingtheball on its way from one
opponentto theother.

Of course,to handlemessagesfrom the coachthe teamdesignershave to spend
somethoughtin their players’behavior anddecisionmodules. Especiallywhende-
signingateamthatcanbeusedwith coachesof otherresearchgroups,thebehavior has
to bevery flexible. TheORCAapproachon this matteris describedin chapter8.

7.4 The ORCA online coach

7.4.1 Generalapproach

The ORCA online coachtakesadvantageof the many analysismethodsprovidedby
theTimeSlice-class(describedin section6.2).As describedbefore,theoffline analysis
tool fed informationfrom logfiles into theTimeSlices.Theonlinecoachdoesalmost
exactly thesame,sincethevisual informationthat it receivesduring thegameis very
similar to that in the logfiles. Thus, during the gamethe coachmaintainsa lot of
analyzeddata.Themainconcernis to produceadvicefrom thisdatathatwill beuseful
for theteam.

Most of the methodsdescribedin chapter6.1 take a lot of computationtime and
needmany instancesof data. But the online coachis requiredto comeup with ex-
ploitable observationsvery soonto maximizeits pay-off from the beginning of the
game.Also, in casethattheopponentteamchangesits behavior, thecoachhasto cre-
atenew adviceafter very few observations. To achieve this, the coachsendsadvice-
andinfo-messagesbasedon statisticaldataat fixedintervalsthroughoutthegame,re-
calculatingits advicefor every communication.Note thatasof now the time needed
for recomputationis insignificantsincemuchof the work is doneby the TimeSlice-
methodin eachcycle. So, after the fixed intervals the coachjust hasto pick up the
analyzeddata.

Thedifferentmethodsto provide adviceandinformationaredescribedin the fol-
lowing.

7.4.2 Marking

In defensesituationsefficient coordinationbetweendefendersis important. In a team
whosedefenserelies on marking, not marking a forward at all or marking a for-
wardwith two defenderssimultaneousis suboptimalbehavior. Communicationmight
helpovercomethesesituations.Yet, in theRoboCupdomaincommunicationis time-
consumingand unreliable. Another methodis to agreeon locker-room agreements
[19]. But locker-room agreementsarenot adaptive andthuscannothandleinforma-
tion acquiredduring the game. So the online coachis the optimal tool to coordinate
markingassignments.

TheORCAcoachidentifiesopponentforwardsandits own team’sdefenders.Since
severalteamsusedynamicroleexchange[13] theORCAcoachexecutestheidentifica-
tion procedurefor every advice.Identificationis basedon theplayer’spositionduring
a certain,manuallychosen,timespan.Sincethe numbersof forwardsanddefenders
andtheaveragepositionsvary from teamto team(andevenwithin a teamdepending
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on its currenttactics),we developedthefollowing method.We assumethateachteam
consistsof threesetsof players,defenders,midfielders,andforwards.Also weassume
thatthepositiondifferenceswithin asetarelessthanthedifferencesbetweendifferent
sets.Thisallowsthecoachto look for clustersandclassifytheplayersaccordingly. Al-
thoughit is obviousthatnoteveryteamdiscrimatesits playersinto thesethreesetsand
that the positiondifferencesarefluent, experimentationshows that the identification
resultsmatchhumanintuitiveclassification.

The next stepis to assigndefendersto forwards. A greedyalgorithm basedon
spatialdistancebetweendefenderandforwardpositionsis used.

7.4.3 Defensive formations

Experimentsshowedthatchangingonly partsof ateamstrategy resultsin inefficiencies
[5]. For example,althoughdefendersareassignedto the closestopponentforwards
asdescribedabove, they tendto run long distancesfrom their homepositionsto their
assignedmarkingtasks.Teamperformanceis betterif thedefensive formationis fine-
tunedto matchthemarkingassignmentsbetter. TheORCAonlinecoachalsosuggests
homepositionsto its defenders.

As mentionedabovethecoachanalyzestheopponentforwards’positionsin situa-
tionsin whichthey attack.Eachcyclethepositionof theopponentplayersis countedin
agrid thatoverlaysthefield. In [16] asimilarmethodis usedto matchteamsto prede-
finedopponentmodels.TheORCA coachmodifiesthis methodin orderto determine
a defenseformationasa functionof theopponent’soffensive formation.

Sinceplayerpositionsdependheavily ontheball andotherplayerpositions,it is not
trivial to determineanopponentplayer’s likely positionduringanoffensive situation.
Theresultinggrid for a playermight look like this afteraddingpositionsinto thegrid
at eachcycle.

30

15 25 25

5

Resulting formation rectangle for given player

Thenumbersdenotethepercentageof cyclesin whichtheplayerwasin theaccord-
ing grid section.Obviously theregion thata playerusesasa homeor actionregion is
veryunclear. TheORCAcoachdoesnot considereverypossiblepositionbut focusses
on finding regionsin which theplayerwill bewith ahigh probability. To facilitateim-
plementationit is assumedthatthis regioncanbedescribedwith arectangle.A greedy
algorithmis usedto find the smallestpossiblerectanglethatcoversgrid sectionsthat
addup to a certainpercentagethreshold.This rectangleis consideredastheplayer’s
offenseregion.
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As of now thedefendersareadvisedto positionthemselvessomewherein theof-
fenseregionof theforwardthey areassignedto mark.Thiscreatesaspatialdistribution
of thedefenderslikeadefensiveformation.If thedefendersfollow thecoach’sadvice,
they arepositionednearto theforwardthatthey areassignedto mark.Thisreducesthe
waysthatthedefendershaveto run in orderto pursuittheir differenttasks.

7.4.4 Detectingopponentsetplaysand formations

Onlinecoachesnot only have the capabilityto issuedirect advice,but canalsocom-
municateinformationto their players.This providesevenmoreresearchopportunity
on opponentmodelling.

TheORCA coachis designedto work with teamsof differentresearchgroups.So
it cannotrely on its playersto handlearbitraryinformationin their decisionprocesses.
ThereforetheORCA coachfocusseson providing positioningandformationinforma-
tion abouttheopponent.

The formationsarea directbyproductof the methodthat identifiesopponentfor-
wardsandassignsnearbydefendersto mark them(seesection7.4.2). For eachoppo-
nentplayerthereexistsa spatialdistribution grid. With theaforementionedalgorithm
compactrectanglesarecreatedfor eachplayer. This informationis sentto theplayers
sothatthey canincorporateopponentpositionsinto their decisions.

We do not believe in identifying standardformationsbecauseplayerpositionsde-
pendheavily on marking,ball movementandnoise[16]. So,observingspatialdistri-
butionsof actualplayerpositionsandcommunicatingtheseto theplayerslooksmore
promising,becauseopponentplayersarelikely to decidesimilaronmarkingandmove-
mentin consecutiveoffensesituations.

AnotheraspectwheretheORCA coachprovidesopponentmodellinginformation
are opponentsetplays. It can be observed that several teamsusefixed positionsto
respondto the goaliekickoffs. The coachlooks for repeatingpositionsin standard
situationsandcommunicatesthemto the playersif it found stablepositions. If the
playersare able to usetheseinformation, they can move to free positionsor mark
opponentsfasterthanif they hadto rely on their own limited view.

7.5 Experiencesdrawn fr om the first coach competi-
tion at RoboCup2001

The first coachcompetitionwasheldat RoboCup2001. All participatingteamspro-
videda teamandcoacheach,which supportedlarge partsof the standardcoachlan-
guage.Thetournamentmoduswasthateachteamwascoachedby all coachesexcept
its own. Winner was the coachwho accumulatedthe most goalsin its games. To
our knowledgethesewere the first gamesin which teamsand coachesfrom differ-
ent researchgroupsworked together. The overall result was that eachteamplayed
worsewith a foreigncoachthanin a baselinegamein which it wasnot coachedat all.
Though,additionalexperimentsby PatrickRiley andGalKaminkaof theparticipating
ChaMeleons/OWL team[17] revealed,thatall coachesperformedbetterthana coach
thatsentrandomadvice.Still, thecoachcompetitioneventhadto beanalyzed.

An importantobservation is that not even oneof the teamssupportedthe whole
standardlanguage. In mostcasesinfo-messageswere ignoredtotally, so opponent-
modellinginformationprovidedby thecoacheswasof no useat all. In onecasethese
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info-messageswere even interpretedas advice-messagesdue to a misunderstanding
on humanlevel. In one gametheseinfo-messagescontainedinformation aboutthe
formation of the opponentplayers,so the coachedteamendedup usinga mirrored
formationwith thedefendersin front of theopponentgoalandtheforwardsin front of
their own goal. Formationswereproblemsanyhow, becausethe teamsuseddifferent
conceptsof homepositions.Not all of theseconceptswereconsistentwith thehome-
directive.

Oneteamcrashedassoonasthecoachsenta playm -conditionbecauseof anerror
in the languagedocumentationwhich claimedtheproperkeyword waspmode. Addi-
tional complicationsarosefrom thefactthattheteamsintegratedcoachadvicein very
differentways.Oneteamalwaysfollowedadvice,othersonly sometimes,andanother
teamgenerallyignoredcertainadvicein somesituations. So coachinstructionsthat
relied on fine-tunedadviceslike OWL’s setplays[17] or the marking- anddefense-
formationof the Dirty Dozencoachwerelikely to fail, becausesometeamsdid not
interprettheseinstructionsas”all or none”.Theinterpretationof thegamesis difficult
even whenanalyzingthe logfiles, becausethe detailedimplementationanddecision
processesof foreignplayersarein largepartsbeyondourknowledge.

Theoverall lessonlearnedfrom this is thata standardlanguageis only asgoodas
thehumandesignersagreeon its semanticsandinterpretation.Also thereis nousein a
standardif only partsof it areimplemented.Finally, whenpluggingtogethersystems
thatweredesignedby differentgroups,a testingphaseis indispensable.

We’d like to thankPatrick Riley from theChaMeleon/OWL team[17], YangYang
from the Wright Eagle team [9], and Omid Aladini from the Hella Respinateam
[8] who provided detailedinformationaboutthe implementationof their teamsand
coaches.Without their help our experiencesfrom this competitionwould not have
beenpossible.

7.6 Conclusion

This chapterdescribedthe approachof the Dirty Dozencoachandthe adviceit pro-
vides. A methodhow to efficiently usethis advicein playerswill be introducedin
chapter8. Online coachesprovide the opportunityto focuson opponent-modelling,
and the standardcoachlanguageencouragescooperationbetweendifferent research
groupsby pairing teamandcoach.Thecoachis a powerful tool, becauseit cancon-
sider information that is not directly accessibleto playeragents. Yet integrating its
adviceis not trivial, especiallywhenworking with foreign teams.Using teamswith
coacheshashigh demandson theflexibility on boththeteamandthecoachside.The
coachon theonehandhasto find out theteam’s flaws andneedsandhasto comeup
with usefuladvice.But on theotherhandit alsohasto observe theeffect of its advice
to ensurethatit doesnotdistracttheplayersmorethanit helpsthem,ashappeneddur-
ing thefirst coachcompetition.Theteamhasto bedesignedsothatit cangetmaximal
pay-off out of theinformationandadvicethatthecoachsends.
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Chapter 8

SFLS

8.1 Intr oduction

Specifyingthebehavior of a multi-agentteamis not trivial andmostof thetime only
possiblefor domainexperts[12]. Oftenthetactics,strategies,andoverallbehavior are
buriedsomewherein thesystem,sometimesevendistributedthroughoutmany files of
sourcecode. In thesescenariosmodificationsto the teamaretime-consuming,error-
prone,andnot transparent.Also, if the behavior is not explicitly representedbut im-
plicitly within linesof programcode,automaticadaptationis veryhard.

This chapterintroducesa methodcalledStrategy FormalizationLanguage(SFL)
which we implementedfor theRoboCupdomain. By representingthe teambehavior
in SFL, humanscanmodify it easilyandfastwithout having to recompilethe source
code.Evenonlinemodificationsto theteamstrategy by a coacharepossible.

Thenext sectiongivesanoverview of thelanguageconceptsof SFL,particularlyby
comparingit to Clangconcepts.A sectionaboutthe implementationof a SFL system
follows,andthelastsectionconcludes.

8.2 StrategyFormalization Language- Concepts

SFL is basedon thestandardcoachlanguage(Clang)[6] (seesection7.3). Oneof the
designconceptsof SFL wasto make it downwards-compatiblewith Clangin orderto
facilitateintegrationof advicesby anonlinecoach[5] (seechapter7). Clangaloneis
not detailedenoughto specifya team’s completebehavior. SFL extendsit by adding
primitivesto thesetof conditions,actions,andthecontrolkeywords,andbyabstracting
severalClangconcepts.Theseadditionsaredescribedbelow.

8.2.1 Abstracting Clang concepts

Oneobservationin theRoboCupdomainis thatcertainbehaviorsneedto beexecutedin
situationswheretheplayer’sexactidentity doesnot matter. For exampleoftenplayers
needto intercepttheball afterapass.Eachplayerneedsabehavior to achievethis. But
Clangonly providesconstantuniform numbersto denoteplayers.SFL generalizesthe
uniform numberconceptby introducingvariablesandprimitivesfor situation-specific
symbols.We will discussbothof thesein turn.
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Uniform numbervariables(i.e. variablesthat denotean uniform number)arethe
only way to referto thesameplayerin differentconditiontokens,for example

(and
(ppos opp {X} SOME_REGION)
(ballinterceptable opp {X})

)

denotesthesituationthatanopponentplayeris in a certainregion andis ableto inter-
cepttheball. But with variablesit is not only possibleto mapthis conditionto trueor
false,but they arealsotheonly way to denotethesameplayerin thedirectivepart:

(advice
(6000

(and
(ppos opp {X} SOME_REGION)
(ballinterceptable opp {X})

)
(do our {3} (mark {X}))

)
)

Situation-specificsymbolsfor uniform numbersdenoteplayersthatobtaincertain
functionsin differentsituations.It is a frequentsituationin RoboCupthat the player
thatis closestto theball shouldinterceptit. Constantuniformnumbersthatareusedin
Clangareof no useto expressthis. SFL extendstheexpressivenessof Clangby intro-
ducingprimitiveslike”ClosestPlayerToBall” or ”FastestPlayerToPlayer”.Thespecific
playernumberreferredto will be boundto the symbol in the cycle in which the rule
fires.This allows to formulatemany micro-situationsin a veryconciseway.

Anotherextensionis the parameterizationof existing conceptsin Clang. The se-
manticsof actionsin Clangarevery general.For example,”(pos REGION)” means
that theplayershouldpositionitself in a certainregion. Region canrefer to arbitrary
portionsof thefield andto locationsof playersor theball. Soit is a hugedifferenceif
theplayershouldreturnto its homepositionwhenit is underno explicit time pressure
comparedto the situationin which it hasto hurry to an opponentplayer in order to
mark it beforethe opponentcanget theball. SFL introducesa parameterto the pos-
actionto denotethepowerthataplayershouldspendfor its moves.In conjunctionwith
thestamina-condition(seesection8.2.3)this canbeusedto formulatestamina-saving
tactics.

Therearemoreactionsthatwereextendedby parameters.Seetheappendixfor the
wholegrammarof SFL in Backus-Naur.

8.2.2 Control keywords

A veryimportantfeatureof SFLis its capabilityto specifyrulesthatcannotbeoverrid-
den. In thefirst coachcompetitionat RoboCup2001theChaMeleonsteam[17] used
hard-codedbehaviors that could not be overriddenby coachadvice. This is a useful
methodto make suree.g. thattheplayerthatis thefastestto theball will interceptthe
ball. It is very easyto specifythis in SFL usingthe”force” keyword. A rule thatcon-
tainsthiskeywordwill beexecutedno matterhow many morerulesareactive. If there
aremorethanone”forced” rules,only thefirst onewill beencountered,becausethen

48



thematchingprocessterminates.Thiscanalsobeusedto speedup therule evaluation
process,similar to thecut in Prolog.

8.2.3 Conditions

The aforementionedintroductionof uniform numbervariablesandsituation-specific
symbolsalreadyextendsthe conditionspecificationexpressiveness.But in order to
implementa teammorelow-level andhigh-level conceptsareneeded.Theseconcepts
areintroducedby addingprimitivesto Clang.First someof thelow-level conceptswill
bedescribed,followedby somehigh-level predicates.

In order to determineif a player can get the ball beforeany opponentdoes(it
doesnot needto be the closestplayer to the ball, cf. section8.2.1), the predicate�
ball interceptable TEAM UNUM SET � is introduced. It is true, if any player in

UNUM SET of the given teamcanget to the ball beforeit movesout of boundsor
is controlledby an opponentplayer. Dependingon this condition e.g. offensive or
defensiveactionscanbeexecuted.

Anotherlow-level predicateis
�
ballvelocityVALUE � whichchecksthevelocityof

theball. VALUE canbea constantor a variable.Variablescanbeusedin conjunction
with the less-,greater-, equal-predicatesthatarealsoaddedin SFL. For example,the
power that a playershouldexert in order to get the ball canbe specifieddepending
on the speedof the moving ball and(alsointroducedin SFL) the player’s remaining
stamina.

Severalteamschangetheir tacticsandformationsbasedon thegoaldifferenceand
remainingtime [19]. SFL containshigh-level predicateslike theseto specifythe be-
havior basedon thesestrategically aspects.Seethe appendixD for the whole SFL
syntax.

8.2.4 Actions

Someof the actionsof Clanghave beenextendedby parameters(seesection8.2.1).
Thesetof Clang-actionsis quiteexhaustive. SFL introducesonly onemajorconcept.
Interceptball causestheplayerto getto theball asfastaspossible.

8.3 Implementing SFL

In thissectionanimplementationof SFLwill bedescribed,theStrategy Formalization
LanguageSystem(SFLS).It shouldbenotedthatthis is only oneof thedifferentways
to implementa multi-agentsystemusingSFL. Thesystemdescribedhereconsistsof
several modules: the parserwhich builds objectsfor eachrule, the matcherwhich
evaluateswhich rulesareactive at eachtime step,the selectorwhich decideswhich
oneof theactive rulesshouldbeexecuted,andfinally theeffectorwhich decomposes
the selectedactionsinto server primitivesandexecutesthem. Eachof thesemodules
will bedescribedin moredetail in thefollowing.

8.3.1 The parser

Thesoccerserverpackagecontainsalex/yaccparserfor parsingthestandardcoachlan-
guageClangthat is usedby thesoccerserver itself to recognizelegal coach-messages.
TheClangparsertranslatesClangmessagesinto C++ objectsby creatinganew object
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for every messageandevery non-atomarelementof themessage.Theresultis a hier-
archicalobject-structurerepresentingthemessage.Developersareencouragedto use
this parserfor coach-messageparsingin their agents.

lex/yaccis a setof parser-generatortools that providesa syntaxfor describinga
grammarby specifyinglexical entriesandproductionrulesandfrom this description
generatesa C-programthat is ableto translatestringsfrom thelanguagegeneratedby
thatgrammarinto any datastructure.For thatpurpose,grammarrulescanhavepieces
of C-codeattachedto themthatarebuilt into thegeneratedparser. Thiscodeis executed
whentherule is appliedduringtheparsingprocessandis usedby thegeneratedparser
to build up theoutputdatastructureusingtheinput of theappliedgrammarrule.

As SFL is an extensionof Clang, implementingthe parsersimply consistedof
extendingtheClangparserby addinglexical entriesandgrammarrulesfor theconcepts
new to SFL andof providing theclassesin whoseinstancesthey areto bestored.

The parser’s input comesfrom the initial behavior-file in the form of SFL-rules
readin at the startof eachagent’s lifetime, and,via the server, from the coachclient
in the form of coachmessagesduring the game. After a rule is parsed,its object
representationis storedin arulebase,whereit remainsuntil its time-to-livehasexpired.
Themodulesmatcher, selectorandeffectorwork with SFL-ruleobjectsratherthanwith
SFLS-rulestrings,sothatparsingonly hasto bedoneoncefor eachmessagearriving.

8.3.2 The matcher

At eachtime stepthe matcherdetermineswhich rules are active. This is doneby
evaluatingthe conditionpartsbasedon the world modelof the agent. Ruleswhose
conditionsareevaluatedastrueneedalsobecheckedif theirdirectivepartsreferto the
agent.Only in this casetherule will behandedover to theselectormodulewhich will
decidewhich of theactive rulesshouldbeexecuted.

Variable- and symbol-handling

Evaluatingconditionsis calledmatching,becausesimilar to Prologit tries to prove a
conditionbasedon the currentworld model. Someconditionsarechecked straight-
forward, like the play-modecondition. But several conditionscancontainvariables.
SFL usestwo typesof variables:

� uniformnumbervariableswhosedomainis 0,1,2,...,11

� realnumbervariableswhich denotean integeror float valuelike thetime cycle
or thespeedof theball.

At the beginning of the matchingprocessall variablesareuninstantiated.Whenen-
counteringsuchan uninstantiatedvariable,the matcherassignsvalueswhich arede-
rivedfrom theworld model. In theDirty Dozenworld modelall variablesin SFL can
beinstantiatedassoonasthey occur. Handlingof realnumbervariablesis easy. A vari-
ableis eitherinstantiatedor not. Thereis no conceptin SFL thatcanfail whenusing
ungroundedvariables,soassigningvaluesto uninstantiatedvariableswill alwaysresult
in anevaluationastrue . Beginningat thesecondencountering,realnumbervariables
canmake conditionsfail. Uniform numbervariablesarea differentcase. They are
handledsimilar to domainsin ConstraintSatisfactionProblems[11]. That is, these
variablesrepresentsetsof uniform numbersthat satisfythecondition. Thesesetsare
reducedby consecutiveconditions.An examplemight illustratethis.

Let usassumewehave thefollowing SFLcondition:
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(and (ppos our {X} REGION_A) (stamina our {X} high))

Letusalsoassumethatin thecurrentsituationtherearetheplayerswith theuniform
numbers2,3,and4 in REGION A, whereonly player3 hasahighstaminalevel. Player
5 hasalsoahighstaminalevel, but is outsideof REGION A. So,whenencounteringX
for thefirst time,thematcherwill instantiateX with � 2,3,4� . In thestaminaconditionit
needsto cut thedomainof X by removing 2 and4, whichdo notsatisfythiscondition.
If noteven3 hadahighstaminalevel, thewholeconditionwouldfail. If theconditions
whereconnectedby anor -junctor, thesetthatsatisfiestheppos - conditionhadto be
unionedwith the setthat satisfiesthe stamina -condition,resultingin � 2,3,4,5� . The
situationgetsmore difficult, if negationsare usedwith nestedconditions. So each
conditionneedsto beevaluatedconsideringits context with negationsandjunctors.

Situation-specificsymbolslike ClosestPlayerToBall have to be evaluatedat
eachtime step, too. They evaluateto exactly one uniform numberso they can be
treatedlikeconstantsafterwards.

Rulesthatcontainuniform numbervariablesor situation-specificsymbolsin their
directiveparthaveto beevaluatedbeforethematchercandeterminewhetherthey refer
to theagent.If theagent’suniformnumberdoesnotappearin theconstantuniformset
of thedirectivepartof a rule, thematchercanskip this rule,becausetheactionsdonot
referto theagent.

The valuesof variableshave to be storedlongerthanjust for the rule evaluation,
becausetheselectorhasto work with them.

Definitions

Justlike in Clang, in SFL it is possibleto defineconditions,regions,directives,and
actions,in orderto refer to themby a shorthandle.The matcheralsomanagesthese
definitionsby maintaininga tableof namesfor eachclassof definitions.Basically, the
definedconceptsarestoredasobjectsjust like the otherrule componentsandlinked
into thematchingprocessif their namesareencountered.

8.3.3 The selector

As mentionedbeforethe selectorchoosesthe bestrule from the active rules. In this
implementationthis wasdonein a simple, yet effective way. Eachrule is assigned
a fixed priority. The basic idea behindthis is that rules are heuristicallyevaluated
on eachof the threeClanglevels (actions,directivesandconditions),beingassigned
threefitnessvaluesthataresummedup. So,certainactionsseemmorepromising,e.g.
interceptball hasahigherfitnessthanmarkingon theaction-level. Directivesrefer
to differentsetsof playersandthemorespecifica playerset,thehigherthedirective’s
fitnesson the directiveslevel. E.g. the fitnessof a directive that refersto the whole
teamhaslessfitnessthanasubset,whichagainhaslessfitnessthanasituation-specific
player-symbol.

Sincetherulesspecifiedin theteam-implementationarefixed,thefitness-assignment
is donemanually, but automatedassignmentwill bestraight-forward.

The third level is basedon the conditionsand is basicallya way to save world
knowledgefrom therulesandincorporatetheminto theselector. Soit is not necessary
to specify in a rule that the agentshouldonly mark an opponentif no teammateis
alreadythere. Certaincommonsenseheuristicscanbe usedon this level to assigna
fitnessvalueto eachrule. This hasnot yet beenimplemented,sotheSFL-rulesin our
teamcontaincertainamountsof this commonsenseknowledgeexplicitly.
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The selectorwill thenexecutethe rule with the highestfitness,unlessoneof the
rulescontainsthe”force”-flag which denotesthat this rule shouldalwaysbeexecuted
if its conditionis true.

Theactionis thenhandedover to theeffector-module.

8.3.4 The effector

In our SFLS-implementationthe effector is a straight-forward mappingfrom the di-
rectives,that the selectorprovides,to the low-level skills. Thanksto the CMU code
thereis a large set of low-level skills and functions. So the effector basicallydoes
somecheckswhetherthe given actioncanbe executeddirectly or needssomemore
decomposing.

SFL doesnot requireto list all necessaryconditionsfor anactionin thefirst place.
Althoughsomeactionsmightalreadybeenfilteredout (in futureversionof theselector
module)if their conditionsarenot satisfied,theeffectorfor examplestill checksif the
agentis closeenoughto the ball and facingthe correctdirectionbeforeexecutinga
pass.

As of now, if an actionfails andcannotbe executed,the agentwill do nothingin
thecurrentcycle. In laterversionstheeffectorshouldbeableto requestanotheraction
from the selector, if therewereseveral to choosefrom. For example,if a pass-action
containsawholesetof uniformnumbers,theselectorwill only passoneto theeffector.
If for any reasontheactionturnsout to beimpossible,theselectorneedsto provideone
of theotheruniformnumbersin thesetasa target.

8.3.5 Integrating coachadvice

In ourSFLS-implementationintegratingcoachadviceis straight-forward.Eachadvice
token that the coachsendsduring thegameis addedto the rule base.Thepriority of
coachrulesis a high fixedvalue. This way it canbeguaranteedthat initial rulesthat
theteamdesignersdonotwantto beoverwrittenby thecoachcanbeassignedahigher
priority, retainingthepossibilitythatdefault or lessimportantrulescanbeoverwritten
by coachadvice.

This simplemethodis successfulasexperiments[18] with our teamandforeign
coachesshow. Theseexperimentsweremadeat the Carnegie Mellon Universityand
revealedthat their coachcansignificantlyimprove thescoreof our SFLS-team.Since
the changesmadeby the coachonly affect the rulebase,this alsoprovesthat our ap-
proachof declarative agent-modellingis promisingand that the performanceof our
teamcanstill beimprovedby specifyingnew rules.

8.4 Conclusion

Behavior specifiedin SFL is easilyandfastmodifiable.Also incorporatingcoachad-
vice is possibleandleadsto successfulresults.As experimentsby CMU showed,the
performanceof our teamis highly flexible anddependson therulesin therulebase.So
tweakingtheserulesshouldimproveour teamin thefuture.

Comparedto Clang,SFLis moreexpressiveandrulescanbeformalizedmorecon-
cise. While we arepositive that the languageSFL coversanything thata teamneeds,
theimplementationof a systemthat interpretsSFL still offersmoreresearchopportu-
nities. Basedon theobservationthatin bothClangandSFL therearemorecondition-
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thanaction-primitives,we believe that in soccertheknowledgewhenandwhy to ex-
ecutecertainactionsis crucial. Therefor, morework shouldbe donein the selector
modulein orderto decidemoredynamicallywhich rulesareexecuted.This alsoin-
cludeshandlingcoachadvicemoreefficiently, sinceit is integratedwith a manually
fixedpriority now, andbacktrackingof actionsif theeffector reportsthatanactionis
not possible.

SFL is just oneway to formalize strategic behavior. Thereis no generalagree-
ment on what a strategy is and how it should be specified. The relatedwork of
COACH UNI LANG [14] shouldbepointedout which formalizesstrategiesin terms
of roles,formationsandtactics. Unlike SFL which is basedon situation-actionmap-
ping, it usesplayertypesby settingparameters.Thus,its notionof strategy is different
thanthatof SFL,which usesit synonymousto behavior.
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Chapter 9

Testing,Debugging and Tuning

9.1 The Gauntlet

9.1.1 The purposeof a gauntlet

During thedevelopmentof our RoboCupteamwe encounteredtheproblemof evalu-
ating changesin the code. A developer(or groupof developers)would implementa
new feature,redesigna strategy or fix a bug andthentestthe new teamat his home
computeror onacoupleof computersonthecampus.Theproblemwasthattheresults
we got from differentgroupswerenot comparable.On somemachineswe would lose
to teamA. Onanothermachinewewouldwin. Anotherproblemweretherandomfac-
torswhich areinducedinto a RoboCupgameby thesoccerserver. Evenif you replay
a gamein exactly the sameconfiguration(codeandhardware)you get significantly
differentresults.To eventhisoutyouhaveto runeachgameacoupleof timesandthen
work with theaverageoutcome.

So we implementeda weekly (and later nightly), automaticallyrun tournament
(gauntletin our lingo). In this tournamentwe took thelatestreleaseof our teamfrom
therepositoryandsetit upagainstanumberof otherRoboCupteamswhichwereavail-
ableon theinternet.We haddifferentconfigurationsof our teamandeachoneof these
configurationshadto play againsteveryotherteam.This resultedin a numberof pair-
ingsandeachpairingwasthenrun five timesto try to reducesomeof therandomness.
Eachgamewasloggedby the logging mechanismimplementedin the soccerserver.
Theselogfilesweresavedandprocessed.We createdvisualizationsof importantfacts
abouteachgameandsetup anumberof HTML-pageswhich showedtheresults.1

9.1.2 Designcriteria

First we neededa way to startgamesremote.This meansthatwe neededa program
which is runonmachineA, startsaserveronmachineB, a teamonmachinesC andD
andthentells theserver to do a kickoff. This programwould beusedfor thegauntlets
but alsohad it’s usesoutsideof them. If a developerwantedto seea game,he/she
didn’t have to dabblearoundwith threedifferenttelnet-sessions.Anothergoalwasto
havetheprogramtransfertheteam-or server-binariesautomaticallyto themachineon

1Of coursethis wasall doneautomatically.
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whichthey shouldrun. But thisshouldonly happenif thelocalversionwasnewerthen
theexisting remoteone(to reducetraffic).

Themaingauntletprogrammthenjustneededto starta remotegamefivetimesfor
eachpairingit cameupwith. Thepairingswerecomputedautomaticallyby thegauntlet
programby scanninga directoryfor subdirectoriescontainingteam-binaries.Thishad
theadvantage,thatif onewantedto changetheteamsof agauntlet,onehadonly to add
(or remove)a new teamdirectory. Everythingelsewould bededucedautomatically.

Anotherdesignconstraintwasthatwe hadto get informationfrom the teamsand
theserverbackto thegauntletprogram.Fromtheserverwe got informationaboutthe
coordinateof the ball in eachtime frame. We usedthis informationto plot a graph
usingtheX-axis asthetimelineandtheY-axis to show theX-coordinateof theball2.
We alsowantedinformationaboutthe scoreandmetainformationon the gamefrom
theserver. Metainformationis stuff like“which teamhastheball for how muchof the
game”,“how long doesthegoaliehave theball”.

To run the clientson the remotemachine,we useda script to startthe eleven(or
twelve whenusinga coach)processesneededto run the team.Usinga scripthadthe
addedadvantageof getting informationaboutthe stateof the clients. We usedthis
mechanismmainly to detectandreportsegmentationfaultsin our clients.

9.1.3 Implementation

Themachineswe wantedto usefor our gauntletwereall reachablevia ssh . We could
thususethe featureof the standardssh client to executea programremote(just like
rexec , only encrypted).Theoutputof theremoteprogramwasechoedback- it became
theoutputof the ssh -client. So theserver andthescript to starttheteamdidn’t have
to worry aboutsendingtheir informationacrossa network. They simply printedit to
STDOUT.

To gettheinformationfrom theserverwe implementeda trainer(or offline coach)
whichcollectedtheeventssentfrom theserver. It thenprintedtherelevantinformation
(ball position,scoreandmetainformation)to STDOUT. Thescript thatstartedtheteam
workedsimilar. It parsedtheoutputfrom individualplayersandwrotetherelevantbits
(nopunintended)to STDOUT.

All this datacametogetheron themachinerunningthegauntlet(whichwasdiffer-
ent to themachinerunningtheserver andto themachinesrunningeachteam).There
a logfile wascreatedfor eachpairing(every logfile containedthedatafor five games).
After thewholegauntletwasfinished,thedatawasthenvisualized.

The visualizationwas doneby a Perl-scriptwhich createda web pagefor each
pairing. The pagecontainedthe resultsfor the five gamesandfive graphsdepicting
theabove discussedcurve. If therehadbeenany segmentationfaultsin our teamthis
information would be given as well. The Perl-scriptfurther createdindex pagesto
easilyaccesstheinformation-pages.Thenall thefreshlygeneratedHTML-pageswere
uploadedto aninternalwebserverandcouldbeaccessedby all teammembers.

2This maysoundconfusing,but it just showeda curve indicatedin which half (andhow far in thathalf)
theball hadbeenthroughoutthegame.
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Figure 9.1: This is a screenshotshowing the visualizationof the first gameof the
pairingATT CMU 2000versusour team(OsnaBallByters). This gauntlettook place
in preparationfor the2001World Championshipsin Seattle.

9.2 Quality AssuranceManagement

9.2.1 Intr oduction

At somepoint in a projectit becomesapparentthat therehasto besomeway of con-
trolling thequalityof theproducedproduct.Especiallyif thereare,say, morethantwo
or threepeopleworkingonapieceof software,theneedto haveone(or more)persons
testingfor bugsand/ or logical mistakessoonarises.This sectionwill beconcerned
with our experienceswith ‘Quality AssuranceManagement’(QAM).

The remainderof this sectionis organizedasfollows: I will give an overview of
thetasksof qualityassurancemanagementandthegeneralprinciplesto adhereto first.
Thentherewill beasectionaboutthetoolsweusedin ourproject.A sectionaboutour
experiencesanddifficulties with quality assurancemanagementfollows, andlast but
not leastanoutlookon whatwe couldhavedonebetter.
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9.2.2 Tasksand generalprinciples

Thepurposeof having someoneto testasoftwareproductasawholeis twofold. First,
thereis someonewhosetaskis explicitly to testandevaluatethesoftware.As opposed
to the individual programmer, who may only testhis / her code,a quality assurance
manageroverseesthedevelopmentof thewholecodeandtheintegrationof new parts
thereof. Only if new codehasbeentestedfor its integrity andsideffectswith theold
code,will it bemergedwith themainbranchof thedevelopingproject.

Second,thepersonresponsiblefor QAM providesapointof referencefor integrat-
ing new piecesof codein aorderedfashion(esp.concerningsequentiality).If thereare
versionconflicts,e.g.whentwo programmersareworking on thesamefile, QAM can
make surethe involvedpartiesarenotifiedof theconflicts. Thatway they candecide
togetheron thepropersolution.

Merging thecodeof a groupof peopleworking on thesamepieceof softwarecan
becomea time-consumingtask.Obviously it is alsonot enoughto codeandtestparts
of a softwareproductonly, but thecompletecodehasto beevaluatedandtestedfor its
integrity. It is alsousefulto haveastandardprocedureof integratingnew codeinto the
software.For thesereasonstheORCA projectdecidedon designatingsomeoneasthe
responsiblefor quality assurancemanagement.

9.2.3 Toolsand Procedures

A very useful tool for generalversioncontrol of a softwareproduct,which we used
extensively, is CVS [1]. CVS is describedin section9.3. CVS is capableof handling
mostof theversioncontrolby itself. Becauseit notifiestheuserof versionconflictsit
cannotresolve,QAM canenterat thatpointandcoordinatetheinvolvedprogrammers.

It is alsoadvisableto createdifferentbranchesfor thedevelopmentversionandthe
releaseversionof thesoftware.Changesfrom thedevelopmentbranchshouldonly be
subsequentlyincorporatedinto themain(release)branchby thepersonresponsiblefor
QAM. Thatway thedeveloperscantry out differentapproacheswithout changingthe
stablerelease.QAM canthenensurethateachchangeis testedandevaluatedbefore
being integratedinto the release. This is especiallytrue for incorporatingmultiple
changesto differentpartsof thecode,whenit mattersmostto providefor sequentiality
becauseof possibleside-effects.

We alsodecidedto createa testingenvironmentsimilar to the actualcompetition
situationby settingupthreedesignatedPCsrunningRedHatLinux 6.2.Wehavemade
theexperiencethatalthoughit is possibleto run bothteams,serverandmonitoron the
samePC, resultsmay vary greatly from gameto gameanddiffer by quite a margin
from the actualresultsin an environmentwhereteamsandserver aredistributedon
different computers.We also usedthis setupfor further testingas describedin the
gauntletsectionof thisdocument(seesection9.1).

Anotherdecisionwe madewasto extractcertainparametersfrom theactualcode
andto includethemin a file called ‘orca.conf’, similar to the Configurationfiles in-
cludedin theSoccerServeror theCMU-Code.Thatway it waseasierto modify those
parametersandto testtheir effectsin thegauntlets.

9.2.4 Experienceswith QAM

Thissectionwill describethewayweactuallyworkedwith qualityassurancemanage-
ment. It turnedout to bea sometimesratherawkwardtask,dueto inexperience,anda
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sometimesvery fun task,dueto seeingpromisingimprovementsin agentbehavior.

Actual day-to-day handling

Whendecidingto usea software like CVS to handleversioncontrol, it is advisable
to make sureeveryoneinvolvedknows how to handlethe system.This is especially
truewith respectto theUpdate-Code-Update-CommitCycleasrequiredby CVS.Even
CVS is only asgoodasits users,andforgettingto updatee.g. before startingto work
sometimesled to ‘forgotten’ linesof code.Sodid not rememberingto commitall the
files changed.It is of coursepossibleto commit all files at once,but sometimeswe
didn’t want that for reasonsof e.g. differentcommentsor not intendingto commit
certainchangesbecausethey hadturnedout to decreaseperformance.Whenworking
with multiple brancheson the commandline, extremecareneededto be taken when
changingbranchesquiteoftenin a singlework session.

Organizingsequentialcheck-insis alsooneof thetasksof quality assuranceman-
agement.Especiallywhenit cameto deadlines(liketournaments),multiplelast-minute
changestendedto somewhatevadethoroughtesting.They wereoftenintegratedquite
fast,withoutpropertestingbetweentheintegrationof thedifferentnew piecesof code.

Evaluation of games

In our project,QAM alsobecameresponsiblefor preliminaryevaluationof theresults
of thegamesplayed.Whethera featureimprovedagentperformanceor not wasthen
usuallydecidedonabroaderbasis,meaningusuallyadecisionby all theprogrammers
working in that area. So QAM is primarily responsiblefor the quality of the code,
not theperformancequality. Of courseit is virtually impossiblefor a singlepersonto
know aboutall thecodeof a pieceof software. Therefore,certainmoregeneralparts
of ouragents(e.g.theSFL team,seesection8) wereleft underthesupervisionof their
respectiveprogrammers.

Weusedtwo methodsto evaluatethebehavior of ouragents.Thefirst, andobvious
one, is to watchgames. We usedthe FC Portugal2000 team[2, 13] asour default
opponent.With thesetupdescribedearlierit waspossibleto watchthebehavior of our
agentsunderquite‘realistic’ conditions.Secondlywe usedweeklyanddaily gauntlets
(asdescribedin 9.1) to gainanoverview of teamperformanceagainstdifferentteams,
alsowith differentconfigurationsfiles. Thiswasusefulto haveabroaderbasisof game
resultsfor decisionsconcerningfurtherneedsfor improvement.

Branching

Using the branchingcapabilitiesof CVS helpedus a lot. The SFL part of the code
wasmainly developedin its own branchandlatermergedwith themainbranch.For
thePlaytree-Versionof theDirtyDozen-Teamdifferentbranchesfor offense,defense,
andcommunicationwereusedat differentstagesof theproject.New approacheswere
implementedandtestedin thosebranchesbeforebeingconsideredfor themainbranch.
If brancheshadn’t beenusedfor sometime it happenedthatmerging codeturnedout
to becomparatively time-consuming.

Shortcomings

We didn’t usebranchingasextensively aswe perhapsshouldhave. We shoulddefi-
nitely have hada separatereleasebranchin additionto our maindevelopmentbranch.
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This releasebranchshould,in thebestcase,only beusedby thepersonresponsiblefor
QAM, andverycautiouslyat that.

Payingmoreattentionto keepingbranchesup-to-datewould certainlyhave saved
a lot of time spenton merging them later. We had problemswith the generalself-
discipline of committing changedcodeto the repository. Especiallywith deadlines
looming,peopletendedto commit ‘improvements’on a ratherarbitrarybasis. Intro-
ducingatest-bedearlierthanwedid wouldhavebeen,in retrospective,agoodthing to
do. Thesameholdstruefor thegauntlets.

Wealsofocussedtoomuchon testingagainstFCPortugal2000becausethey were
thestrongestopponentandqualificationopponent.Becauseof thesuperiorabilitiesof
their agentswe weremostlyconcernedwith improving our defenseandneglectedthe
offense.We developedoffensive conceptsandweren’t ableto evaluatethemproperly
becauseduringgamesour teamspentmostof its time in thedefensive.

9.2.5 Conclusion

Ensuringthe quality of the softwareproducedis an obvious demandfor any serious
programming.In a domainlike RoboCupwhereperformanceis measuredin a rela-
tively straightforwardway, it is clearthattheperformancequalityof thecodeis usually
put first. This doesn’t eliminatetheneedto ensurethe integrity andcoherenceof the
actualcode.Agentspreferablyrun without crashingor usingtoo muchof thesystem
andnetwork resources.It is thereforeusefulto introducea formal way of quality as-
surance.Thiscanbedoneby designatingsomeoneto performthedescribedtasks.We
foundthathaving aquality assurancemanagerwasdefinitelyhelpful.

9.3 CVS

In theORCA-ProjectCVS is usedfor versionmanagement.It is a tool to keepaneye
on differentversionsof eachprojectfile. It canbeusedto mergedifferentversionsof
thesamefile or to extractapatchfile of thedifferentversionsof thesamefile. Youcan
find a manualandotherresourcesunderhttp://www.cvshome.org.

In ourprojectwehavemadegoodexperienceswith CVS,becauseweoftenhadthe
problemthattheactualversionof ourprojectdid notwork andwith CVSwecouldroll
backto a working version.This alsohelpedusto locatea bug within 1 or 2 files most
of the time. CVS alsohelpedus to tag specialversionsandto split the development
treeto havedifferentbranchesthatwereimportantto beimplemented,but leadto anot
properlyworking versionin themeantime.

Nowadaysyou can’t maintainsucha hugeprojectwithout usingversionmanage-
ment anymore. Even throughwe did not test other versionmanagementtools like
velvet rose,CVS fitted to our needs,becauseit wasavailablefor free,you could get
differentGUI’s for it, it is quiteeasyto use,stable,andavailablefor Linux.
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Chapter 10

Tourneys

“My father learnedme oncethat making mistakesis not very clever.”

While this is trueit is notalwaysfatalto makemistakes.Makingmistakesandnoticing
you did so lets you grow. All peopleinvolved in this projecthave never participated
in a RoboCupevent. Thusmakingmistakeswasto beexpected.This chapteris about
whatwe learnedfrom the“mistakes”we made.

10.1 RoboCupGerman Open2001in Paderborn

Onemajorpoint,thatbecameobviousimmediately, wasthatweneversaw asimulation
matchtheway it shouldlook. Thesetupin Paderbornincludedawell runningnetwork
of Pentium-III with 800Mhz to usefor the simulationcompetition. With several of
thesemachinesfor every teameverything went smooth. Up till then we had never
seena gamerunning at the speedit shouldbe running at. Our computersat home
just weren’t fastenoughand the network at the university is of coursenot designed
for andnot exclusive to RoboCupsimulationmatches.Of coursewe hadnoticedthat
somethingwas not running right, but the most shockingexperiencewas that speed
mattersa lot in the simulationleague.Even our teamplayeda lot betterunderthese
conditions. The setbackwas that it didn’t improve nearlyasmuchwith theseextra
resourcesastheopponentsdid.

To build agoodteamin RoboCupsimulationrequiresawell tunedsystemto testit
on. You needthebestconditionsfor bothyour own teamandtheopponent.Without
it youwill not getvalid results.Thesimulationleagueis highly timecritical. A couple
of millisecondshereandtherecandrasticallychangetheperformanceof singleagents
andthewholeteam.

Our experiencein Paderbornshowedushow importantit is to coordinatea group
of individualsto achieveagiventask.Weweremakinglastsecondchangesin parallel.
That is in itself not a badidea,but it includestheresponsibilityof communicating.It
is terribly importantthatthepersonthatis startingtheteamknowswhichbuild to start.
By the time the conteststartedwe hadseveral differentversionsof our team. Each
with differentbrandnew andolderfeatures.Mostof theneweroneswereof coursenot
thoroughlytestedif they weretestedat all. We thoughtaboutthis matterbeforehand
andhada stableversionto fall backto, but therewasa majorbug thatwouldn’t allow
our agentsto score.Thisbug hadto befixedandit was.Thatof coursemeantthatour
“stable” versionwasnot on our CD but modifiedright thereon thecontestcomputers.
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Severalof uswerehackingawayrightnext to eachother. Everybodywasveryabsorbed
in whateverheor shewasdoingsonobodyreally knew whatsortof versiontheothers
wereworking with or on. Thatway someimportantandsomeminor bugswerefixed
but nobodyknew of all of themandespeciallyif a certainversionfixed all of them.
This led to a lot of confusionandof coursestress.

We alsohaddifferentstartingscripts.Oneof themmadeespeciallyfor thecontest
andanolderone.Theolderonedidn’t includethefile which heldall of theimportant
parameters.Of coursein ourfirst matchdueto ourconfusionweusedthewrongscript.
Theresultbeingour playersstayingin their fixedformationandnot going to theball
even if it was just a few metersaway. Major malfunctioninglike this resultsin big
stress.It wasour first tournamentmatchandwe didn’t losebecausewe codedwrong,
we lost becausewhat we codedwasn’t even being executed. An experiencedteam
would immediatelywork on somemeasurethat keepsthis from happening.Instead
of beingthe coolheadedprofessionalswe wish we were,we startedto freak out and
turnedon eachother.

For a teamin ahostileenvironmentprovidedby acompetitionit is of unrivaledim-
portancethat theteammemberscanrely on eachotherandsupporteachother. There
arealwaysconflictseven conflictsof personalnature. Theseconflictshave to be re-
solvedor put asidewhenit comesto gettingthe job doneasa team. Talking abouta
hostileenvironmentis not really appropriatewhenit comesto RoboCupcompetitions.
Oneimportantthing we learnedin Paderbornwasthat this really is a communityof
peopleworking on problemsin thesamearea.Thecompetitionis of courseimportant
andcompetitive. If you loseyou loseandyou’reout of thecompetition.Thatdoesn’t
meanthatyou’reout of thecommunitythough.

10.2 RoboCup2001Seattle

The secondtime we got into contactwith the communitywaswhenwe attendedthe
Worldchampionship.AlthoughPaderbornwasinternationalit wasmainly Europe.In
SeattletherewasEurope,America,Asia andAustralia. And maybemoreimportant
thanthe variety was the numberof peoplethat attendedthis event. Therewere just
so many of them. Everybodywas involved in one of the leagues. Therewere 44
simulationteamswhich meantyou hadenoughpeopleto get to know without ever
talking to anyonefrom anotherleague.Therewasof coursesomeinteractionbetween
leaguesbut for the main part the leaguesstuck to themselves. Therewere enough
internalproblemsto solve.

It wasnot just many anddifferentpeople. It wasalso importantpeople. People
youknow by namesfrom papersor becausethereon thecommittee.At first youstand
thereand starein awe at theseimportantpeople,but after a while you are getting
problemswith the systemandyou have to go talk to them. The big surpriseis that
they treatyouasanequal.They treatyouassomebodythatis advancingtheRoboCup
community. This is anexperiencethatcannotbemadewithout goingto gatheringsas
thisone.Cuttingedgeresearchersandscientistsright therein thesameroom,thesame
competitionandunbelievably socially on the samelevel asyou are. By sayingthey
treatyou asequalsdoesnot meanthat they talk to you asif you hadgonethroughthe
sameextendof learning,researchandRoboCupexperienceasthey haveandindulging
in out of this world terminology, but ratherthat they talk to you assomeonewho is
interestedin thesamethingsyou are.They arehappy thatyou arethere,thatthereare
morepeoplelike them.Trying to achievenew thingsin RoboCup.
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Oneof theimportantpeoplewasGal Kaminkaa memberof theorganizationcom-
mittee. He helda really goodtalk aboutwhat it meansto do science.He stressedthe
themeof this yearsRoboCup:“Fun competition.GreatScience.(tm)” Oneimportant
point thathetried to bringacrosswasthedifferencebetweendoingresearchanddoing
science.If you find a solutionto a problemandtry it andit worksvery well, but you
don’t tell anyonehow you did it, you area researcherbut no scientist.An important
partof scienceis telling peopleaboutwhatyou aredoing. If you comeup with some-
thing thatyou think is new, checkthe literature.Thechancesareincrediblyhigh that
somebodyalreadytried somethingvery similar. If you can’t find anything askpeople
working in that field andthey will point you to the literature. Gal really stressedthis
point (“There is alwaysliterature!”). Take a goodlook at what theotherpeoplehave
beendoingandwhatthey foundout. Compareyour resultsto theirsandshow what is
different.If somethingyoudodoesn’t work out thewayyouexpectit to, try to find out
why it didn’t work thatway. If somethingdoesn’t work at all try to find out why and
mostimportanttell peoplewhateveryoufind out. If youdo thatyouaredoingscience.
In scienceit is importantto tell people.
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Chapter 11

Conclusion

11.1 Achievements

Theoverall successof theORCA-projectis obvious. Despitethefact thatnoneof the
studentmembershadexperiencewith a projectof this sizeor even implementingin
C++, a runningandcomplex multi-agent-systemwasdeveloped. It took part in the
GermanOpenandRoboCup2001,sotheproject’squalificationis undeniable.

Studentprojectslike this onenot only aim at achieving thegivenprojectandindi-
vidual goal,but alsoaim at improving andacquiringsocialskills that areneededfor
workingin aprojectof areasonablesize.Lessonswerelearnedin projecthandling,e.g.
time schedules,conflict management,presentations,andjoint softwaredevelopment.
Severalmethodsfor quality assuranceandworking plansthatareusedin company or
academicprojectswereused.Also thestudentmembersgot familiarwith differentsci-
entific methodsandtools. Theexperiencesdrawn from this projectwill beusefulfor
futureprojects,not only for theORCA members,but hopefullyalsofor otherstudent
projectsthatmight learnfrom ourexperiencesdescribedin thisdocumentationin order
to avoid themostprominentpitfalls.

Although this studentproject was plannedto last only oneyear, thereare plans
to continueit. Throughoutthis paperseveral challengesthat canbe worked on were
described.
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Theircontinuoushelpandencouragementwasby farmoreimportantto usthanany
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Appendix A

Debug-API

A.1 Intr oduction

For debuggingpurposeswe includeda Debug-API which you mayusewhenworking
with our code.We giveashortdescriptionon how it works.

A.2 Basics

TheDebug-API is definedin the utils.C andutils.h files. Especiallyutils.h is
importantbecauseit holdssomeimportantdefinitions.

If youwantto debugsomethingyou canusetheMAKELOGmacro:

MAKELOG((debug_leve l, debug_facility, message))

Dependingon whetherthedebugflag is givenat compilingtime (-DDEBUG) themacro
will expandto adebuggingcall. MAKELOGneedsthreeparameters:

1. debug level anumberbetween0 and99
debug level setsa level at which the messagewill be consideredfor output
with 0 beingvery importantand99 beingleastimportant. Throughthe levels
youcancontroltheamountof informationthatis supposeto beput out.

2. debug facility describesa binaryvalue
thefacility is thegeneralgroupof debug information. In utils.h we included
somefacilitiesalready.

3. message thedebugstring
themessageis constructedsimilar to stringsfor printf

Whenthecodeis compiledwith the debug flag settheclient maybestartedwith
debug options.If no optionsaregivenor if someareleft out thedefault valueswill be
used:

� debug-fac thedebug facility asabinarynumberor a string
defaultvalue:DBG ANY
if the binary numberis in the set facility all entrieswith that facility will be
shown. Possiblestringsare
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facility binary value

DBG CMU 1
DBG OFFENSE 2
DBG DEFENSE 4
DBG GOALIE 8
DBG COMM 16
DBG COACH 32
DBG TRAINER 64
DBG FORM 128
DBG SFL 256
DBG OTHER 512
DBG ANY 2 ��� 30
DBG ALL 0

TableA.1: debug facilities

If morethanonefacility is neededthesumof thefacilitiesneedsto beentered.
DBGANYwill be usedif no facility is givenwhenthe client is started.DBGALL
will alwaysbeshown. Thosetwo kindsof messageswill getthroughif nodebug
facility is handedto the client whenstarted. If you includea debug facility in
your startscript thenonly DGBALL messagesandyour chosenmessageswill be
included.DBGANYwill notbeseenanymore.

� debug-lev thelevel asanintegerfrom 0 to 99
defaultvalue:99
if a given debug entry hasa matchingfacility it is testedif the debug level of
thatentry is equalor lower thanthe setdebug level. With the default valueall
messagesshouldgetthrough.

� debug-file afilename
defaultvalue:STDOUT
if a filenameis given the debug information is storedin the file. Usually, the
messagesaresendto STDOUT.

A.3 Examples

fr om our code

SinceweusedtheDebug-APIweincludesomeexamplesthatwill helpyouunderstand
how it works:

In Memory.C line 135thereis a debug line:

MAKELOG((40, DBG_OTHER,"adding %d Tokens:" ,tokens.size()));

It is a debug messagethat is not categorizedandthereforethemessageis put into
the’othermessages’.

In line 197of thesamedocumentit states.

MAKELOG((30,DBG_OTHER, "Warni ng, named directives not yet
supported."));
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andin MemFormation.C it readsin line 353.Sinceit is aformationdebugmessage,
it is labeled’DBG FORM’.

MAKELOG((1, DBG_FORM,"current formation: %s \n",
currentFormation->n ame));

Thesewill beusedasanexampleto explain thegeneraldebugprocedure.

printing DBG OTHER messages

If thecodehasbeencompiledwith thedebugflagandif theclienthasbeenstartedwith
-debug-fac=DBG OTHERthentheclientwill putout theline ’adding...’, and’Warning,
...’ but not theinformationaboutthecurrentformationsincethelastmessagebelongs
to a differentfacility1.

printing all examplemessages

If theDBGOTHERaswell astheDGBGFORMmessagesareneededadifferentfacility has
to besetwhenstartingtheclient. To get thenew facility numberthetwo valuesof the
chosenfacilitieshaveto beadded.Accordingto thetableA.1 aboveandthedefinitions
in utils.h thevaluefor DBGOTHERis 512andthevaluefor DBGFORMis 128.Therefor
thenew facility would be640andis setby startingtheclientwith -debug-fac=640 .

refining output

Sincethedefault level is 99 all messagesin the examplewill appearsincetheir level
is lower then99. But if only high priority messagesaresupposedto be considered
than adjustingthe debug level the client usescan help. The line -debug-fac=640
-debug-level=30 will leave the ’adding...’ line from the first debug exampleline
untouchedsinceit’s level is abovethenew debug level.

separatefilename

Finally, if themessagesaresupposedto bestoredin aseparatefile insteadof STDOUT
theline debug-file= filenamehasto beaddedwhenstartingtheclient.

A.4 Known Problems

As we wereworking with the Debug-API we discoveredthat it didn’t handleobjects
too well. In order to get the valuesof any given objecteachvaluehasto be put in
a string variable. So this seemsto be not ascomfortableascout << my object <<
enld; .

1Of course,all DBGALL messageswill appearaswell
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Appendix B

Terms

In this sectionwewill explainsometermsthatweusethroughoutthisdocument:

� basicskills
actionssentto theserver; right now, theORCAclientusestheCMU skills asit’s
basicskill.

� CMU
Carnegie Melon University; developerof the agentwe usedto baseour team
upon

� Dirty Dozen
teamnameusedduringtheWorldchampionshipin Seattle

� high level skills
combinationsof basicskills; An actionsore goal would be considereda high
level skill sinceit involvesmultiple basicskill actionlikekick, dashor turn

� logfile analyzer
cananalyzegamesandgatherinformationfrom log files. Sinceit doesn’t follow
agamein progressit hasmoretime at it’s disposalto reachit’s conclusions.

� offline coach
seelogfile analyzer

� online coach
interactsthrough the standardcoachlanguageClang with teams. The Dirty
Dozenteamwasdevelopedto behighly compatiblewith theinformationcoming
from anonlinecoach.

� OsnaBallByters
teamnameusedduringtheGermanOpenin Paderborn

� positional terms
herearesometermswe usedto describethe player’s positions. The valuesof
thosepointsarereadfrom thefile formation.conf

– HomePos
apointthatdescribestheplayer’sinitial position.It is thecenterof all other
positionalvalues.
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– HomeRange
a circle in which theplayeris freeto positionitself.

– MaxRange
a circle that is usedto describethe maximumradiusa playershouldtake
into accountto calculateit’s actionsfrom

� SFL and SFLS
oneof our team’scoreelementsis SFL andtheSFLScomponents:

– Clang
the standardcoachlanguagethatwasagreeduponby the RoboCupcom-
munity

– effector
convertstheselectedrule to a serverconformaction

– matcher
determineswhich rulesareactive at eachcycle dependingon the world-
state

– rule base
afile thatholdsthedifferentSFLSrules.It is readwhentheclientis started.
Throughoutthegameanonlinecoachmayaddnew rulesto thatbase.

– selector
choosesarule out of theactive rulesthatwerefoundby thematcher

– SFL
Strategic FormalizationLanguage;an extensionto the StandardCoach
Language(Clang)thatis usedby our teamto describeteamstrategies

– SFLS
A systemthat runsstrategies that werespecifiedin SFL. An exampleof
sucha systemis implementedin the’SFLS ORCA’ team.
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Appendix C

SFLSRule Writing

In thissectionexamplesandmethodsonhow to write SFLSrulesshallbegiven.Please
refer to chapter8 for conceptsand to appendixD for the completegrammar. Our
currentrulescanbe found in sfl/behavior.sfl . If a differentrulesetshallbeused
this file will haveto beedited.

C.1 GeneralConcept

As mentionedin chapter8 SFLSis basedon the standardcoachlanguageClang. In
orderto dealwith ourneedswehadto extendthelanguagein orderto expresswhatwe
neededto implementa whole team’s behavior. Still we maintaineda compatibility to
theoriginal languagemakingit easyfor thecoachlanguageto beincorporatedinto our
rule basis.For informationon thestandardcoachlanguagereferto chapter7.

C.2 Syntax

messagetypes

Wehavefivedifferentmessagetypesthatmaybeusedtowrite rules:advice, define,
info, meta, freeform . For ourclientweonly usedthefirst two astheothersarenot
socrucial for a working client. Insteadthey rathermirror thetypesthatClangdefines
andareleft for compatibilityreasons.

Thecoretypeof messageis advice sinceit describesrulesin termsof conditions
anddirectiveswhichmakeuptheclient’sbehavior. Generally, eachrule lookslikethis:

(advice
(TIME-TO-LIVE

(CONDITION)
(DIRECTIVE1)
(DIRECTIVE2)
...
(DIRECTIVEn)

)
)
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TheTIME-TO-LIVE setsthetimeasanintegernumberthatthisruleshouldbeactive
measuredin RoboCupframesstartingat time0. Useafigure � 6000to makesurethat
therule will bevalid during thewholegameandeventualextra-times.A lesservalue
canbeusedto describebehavior thatshouldonly beusedat thebeginningof thegame.
Yet,actuallythis is just for compatibilityreasons.The time -conditionshouldbeused
to specifyintervalsthatdo nothave to startat cycle0.

Conditions

In theCONDITIONpartaconditionis expressedthatis checkedagainstthecurrentworld
state. If the two matchthe first DIRECTIVE that refersto the agentwill be executed.
Below area few examplesof conditions:

� true
averysimpleconditionthatis of coursealwaystrue

� bowner our � 5 �
this rule matchesif theplayerwith thenumber5 in our teamhastheball

� bowner opp � 5 �
this is trueif theplayerwith thenumber5 in theopposingteamhastheball

� bowner our � 0 �
if it is not crucial that a certainplayer hasthe ball the number0 is used. It
matchesif any memberof our teamholdstheball

� ppos opp � 0 � 1 11 (arc (homepos) 15 30 0 360))
this condition describesa situationin which 1 andup to 11 opponentsare in
a ring (startingat 0 degreesandgoing around360 degrees)that hasan inner
diameterof 15 andanouterdiameterof 30 lengthunits

� ballInterceptable our � (closestPlayerToBall our) �
if theplayeron our teamthatis closestto theball canintercepttheball this rule
matches

Conditionsmay be negatedby putting a not aroundthe condition. Two or more
conditionsmaybecombinedwith anand or anor .

(and
(CONDITION 1)
(CONDITION 2)
(CONDITION 3)

)

Theequivalentis truefor or .

Dir ectives

Eachdirectivein ourrulesetstartswith ado followedby our 1. Thenat leastoneplayer
number, situation-specificsymbol,variableor 0 hasto be given aswell asa specific
action.

1Directiveswith dont arenothandled.

71



� (do our � 0 � (pos (pt ball) 100) )
if the condition for this directive is true the whole team(representedby 0) is
supposedto go to theball positionwith power100.

� (do our � (closestPlayerToBal l our) � (interceptball 100) )
this directive makesour closestplayerto the ball interceptthe ball with power
100.

� (do our � (closestPlayerToBall our) � (bto "their goal" � s � ) )
in thisexampletheobjectiveis to scoreagoal:ourclosestplayerto theball shall
shoottheball into theregion their goal by methodscore.

The last exampleshowed a usefor the messagetype define which will be dealt
with in thenext section.

Defines

Throughdefinesit’s possibleto write down complex conditions,directivesor regions
onceandthroughthegivenlabel refer to it easilyelsewherein the rule basis.Instead
of writing theopponent’sgoalregioneachtimea defineis used:

(define (definer "their_goal_zone"
(arc (pt 52.5 0) 0 18 0 360)

)
)

(define (definer "their_goal"
(quad (pt 52.5 15) (pt 52 15) (pt 52 -15) (pt 52.5 -15))

)
)

Now eachtime the region aroundthe opponent’s goal or the goal itself is needed
their goal zone or their goal maybewrittenasseenin thedirective :

(do our � (closestPlayerToBall our) � (bto "their goal" � s � ) )

Likewise,conditionsanddirectivesmaybedefinedandreferredto. This way it is
possibleto write down complex situationslike beingin theoffenseor standardsitua-
tionslike acornerkick onceandreferto themeasily.

C.3 Writing rules

Whenwriting rulessomethingshaveto bekeptin mind

� priority rating
ascanbereadin chapter8 theclient choosesthecurrentrule by a priority num-
ber. Thehigherthenumberthemoreimportanttherule or themorespecificthe
rule. Soeachrule hasto beheadedby a numberwritten in ’ � ’ ’ � ’. Pleaserefer
to thefile sfl/behavior.sfl from our releasedcodefor examples.
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� useof defines
it hasalreadybeenpointedout that theuseof definesis ratherpowerful andits
useis highly encouraged.It helpsto maketherulesmorereadableandkeepsthe
dangerof errorsdown.

� not all is implemented
althoughthegrammarappearsrathercompletesomefeatureshave not yet been
implemented.This is documentedin appendixD.
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Appendix D

SFL - grammar

by Timo Steffens
Thegrammarof SFL is basedon thestandardcoachlanguage(Clang)[6]. Dif fer-

encesto Clangarecommented.

<MESSAGE>-> <INFO_MESS>
| <ADVICE_MESS>
| <META_MESS>
| <DEFINE_MESS>
| <FREEFORM_MESS>

#Advice and Info messages
<INFO_MESS> -> (info <TOKEN_LIST>)
<ADVICE_MESS>-> (advice <TOKEN_LIST>)
<TOKEN_LIST> -> <TOKEN_LIST> <TOKEN> | <TOKEN>
<TOKEN> -> (<TIME> <CONDITION> <DIRECTIVE_LIST>)

| (clear)
<CONDITION> -> (true)

| (false)
| (ppos NUMNUMTEAM UNUM_SETREGION)
| (bpos <REGION>)
| (bowner <TEAM> <UNUM_SET>)
| (playm <PLAY_MODE>) |
| (and <CONDITION_LIST>) |
| (or <CONDITION_LIST>) |
| (not <CONDITION>)
| (action TEAM UNUM_SETACTION)# Some player in UNUM_SETexecutes

# ACTION. Not implemented in SFLS.
| (time VALUE) # Servertime is VALUE (so may be

# a variable)
| (goal_diff VALUE) # Goal difference is VALUE
| (stamina TEAM UNUM_SETLEVEL)# Someone in UNUM_SEThas the

# specified stamina level
| (eq VALUE VALUE) # Used to compare variables and/or

# constants
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| (equnum UNUMUNUM) # Used to compare uniform number
# variables

| (lt VALUE VALUE) # less than
| (gt VALUE VALUE) # greater than
| (state "STRING" "STRING") # value of the state is the second

# STRING used to maintain states
# e.g. (state "ballStopped" "true")
# 2do maybe second STRING should be
# replaced by VALUE?

| (ballvelocity VARIABLE) # ball has the specified velocity
| (ballinterceptable TEAM UNUM_SET) # Some player in UNUM_SETcan

# intercept the ball
| (ballcatchable TEAM UNUM) # intended for goalie, not

# implemented in SFLS
| "STRING"

<CONDITION_LIST> -> <CONDITION_LIST> <CONDITION>
<DIRECTIVE_LIST> -> <DIRECTIVE_LIST> <DIRECTIVE> | <DIRECTIVE>
<DIRECTIVE> -> (do <TEAM> <UNUM_SET><ACTION>) |

| (dont <TEAM> <UNUM_SET><ACTION>)
| (force <TEAM> <UNUM_SET><ACTION>) # execute this rules as soon as

# encountered, ignore all other
# active rules

| "STRING"

<ACTION> -> (pos <REGION> [real]) | # Dash_power
| (pos <REGION>) |
| (home <REGION>) |
| (bto <REGION> <BMOVE_SET>) |
| (bto <UNUM_SET>PASS_MODE_LIST) | # PASS_MODE
| (mark <UNUM>) |
| (markl <UNUM>) |
| (markl <REGION>) |
| (markl <REGION> <UNUM>) | # position agent between opponent UNUM

# and REGION
| (oline <REGION>) |
| (htype <HET_TYPE>)
| (state "STRING" "STRING") # saves states

# e.g. (state "ballStopped" "true")
| (interceptball [real]) # intercept ball with speed [real].
| (catchball) # intended for goalie, not implemented

# in SFLS
| "STRING"

<VALUE> -> integer | real | ’A’-’Z’
<LEVEL> -> low | mid | high # Levels for Stamina and such

<PASS_MODE_LIST> -> <PASS_MODE_LIST> <PASS_MODE>| <PASS_MODE>
<PASS_MODE>-> safe | risc | short | long # similar to BMOVE_TOKEN.
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<PLAY_MODE>-> bko | time_over | play_on
| ko_our | ko_opp | ki_out | ki_opp | fk_our | fk_opp
| ck_our | ck_opp | gk_our | gk_opp | gc_our | gc_opp
| ag_our | ag_opp

<TIME> -> [int]
<HET_TYPE> -> [int]
<TEAM> -> our | opp

| both # not implemented in SFLS
| teamOfFastestPlayer ToBall # situation-specific symbol
| teamOfClosestPlayer ToBall #situation-specific symbol
| (teamOfFastestPlaye rTo Pla yer TEAM UNUM) #situation-specific symbol
| (teamOfClosestPlaye rTo Pla yer TEAM UNUM) #situation-specific symbol

<UNUM>-> [int(0-11)]
| ’A’-’Z’ # UNUMVARIABLE
| (FastestPlayerToBal l TEAM) #situation-specific symbol
| (ClosestPlayerToBal l TEAM) #situation-specific symbol
| (FastestPlayerToPla yer TEAM TEAM UNUM) #situation-specifi c symbol,

#first TEAM denotes the team of the resulting player,
# second TEAM and UNUMdescribe target-player

| (ClosestPlayerToPla yer TEAM TEAM UNUM) #situation-specifi c symbol
| (BestPassPartner TEAM UNUM) #situation-specifi c symbol

# best passpartner of UNUMin TEAM
# TEAM and UNUMare ignored in SFLS

| (BestDeckPartner TEAM UNUM) #situation-specific symbol
# TEAM and UNUMare ignored in SFLS

<UNUM_SET>-> { <UNUM_LIST> }
<UNUM_LIST> -> <UNUM_LIST> <UNUM>| e

<BMOVE_SET>-> { <BMOVE_LIST> }
<BMOVE_LIST> -> <BMOVE_LIST> <BMOVE_TOKEN>| <BMOVE_TOKEN>
<BMOVE_TOKEN>-> p | d | c | s

<REGION> -> <POINT> |
| (null)
| (homepos) # homeposition of the evaluating(!) agent
| (quad <POINT> <POINT> <POINT> <POINT>) |
| (arc <POINT> [real] [real] [real] [real]) |
| (reg <REGION_LIST>)
| "STRING"

<REGION_LIST> -> <REGION_LIST> <REGION> | <REGION>
<POINT> -> (pt [real] [real])

| (pt [real] [real] <POINT>)
| (pt ball)
| (pt <TEAM> <UNUM>)
| (mult <POINT> <POINT> # multiply coordinates, used for

# simple coordinate-arithmet ic
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| (plus <POINT> <POINT> # similar to point-relative,
# adds coordinates

<META_MESS>-> (meta <META_TOKEN_LIST>)
<META_TOKEN_LIST> -> <META_TOKEN_LIST> <META_TOKEN>| <META_TOKEN>
<META_TOKEN>-> (ver [int])

<DEFINE_MESS> -> (define <DEFINE_TOKEN_LIST>)
<DEFINE_TOKEN_LIST> -> <DEFINE_TOKEN_LIST> <DEFINE_TOKEN>

| <DEFINE_TOKEN>
<DEFINE_TOKEN> -> <CONDITION_DEFINE>

| <DIRECTIVE_DEFINE>
| <REGION_DEFINE>
| <ACTION_DEFINE>
| <PLAN_DEFINE> # used to collect several rules into one

# named tactic. untested in SFLS
<CONDITION_DEFINE> -> (definec "[string]" <CONDITION>)
<DIRECTIVE_DEFINE> -> (defined "[string]" <DIRECTIVE>)
<REGION_DEFINE> -> (definer "[string]" <REGION>)
<ACTION_DEFINE> -> (definea "[string]" <ACTION>)
<PLAN_DEFINE> -> (defineplan "[string]" <TOKEN_LIST>) # see above

<FREEFORM_MESS>-> (freeform "[string]")
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Appendix E

netif.C

deque<std::string> orca_udp_buffer(10 ); int init_udp = 0;

int wait_message(char *buf, Socket *sock) {
if (receive_message(buf , sock) == 1) {

if(strncmp(buf,"(i nit ",4 ) == 0){
init_udp=1;

return 1;
}
while(receive_mess age(bu f, sock) == 1){

if(strncmp(buf,"(in it" ,4) == 0){
init_udp=1;
return 1;

}else{
orca_udp_buffer.pus h_back (bu f);
}

}
}
else for (int i = 0; i < 100; i++) {

if (receive_message(b uf, sock) == 1){

if(strncmp(buf,"(i nit ",4 ) == 0){
init_udp=1;
return 1;

}
while(receive_mess age(bu f, sock) == 1){

if(strncmp(buf,"(in it" ,4) == 0){
init_udp=1;
return 1;

}else{
orca_udp_buffer.pus h_back (bu f);
}
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}
}
my_error("sleeping , waiting for message");
usleep(50000);

}
return 0;

}

(...)

int receive_message(ch ar *buf, Socket *sock) {
int n,servlen ;
struct sockaddr_in serv_addr ;
if(!(orca_udp_buffer .empty ()= =0) && init_udp == 1){

// fprintf(stderr,"ho le was vom puffer\n");
buf = (char *)(orca_udp_buffer .fr ont ()) .c_ str ();
orca_udp_buffer.po p_f ron t() ;
return 1;

}

servlen = sizeof(serv_addr) ;
n = recvfrom(sock->sock etf d, buf, MAXMESG,0,

(struct sockaddr *)&serv_addr, (socklen_t *)&servlen);
(...)
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Appendix F

Authors

Section Author
1 AndreasG. Nie
2 Philipp Hügelmeyer
3 AndresPegamandMarcoDiedrich
4.1and4.2 SeanButtinger
4.3 AngelikaHönemann
4.4 LeonhardHennigandPhilippHügelmeyer
4.5 Timo Steffens
5 AndresPegam
6 Collin Rogowski
7 Timo Steffens
8 Timo Steffens
8.3.1 SeanButtinger
9.1 Collin Rogowski
9.2and9.3 LeonhardHennig
10 AndresPegam
11 Timo SteffensandAndreasG. Nie
A, B andC AndreasG. Nie
D Timo Steffens
E Philipp Hügelmeyer
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