
Christine Carl

Kernels for Structures

PICS

Publications of the Institute of Cognitive Science

Volume 9-2004

ISSN: 1610-5389

Series title: PICS
 Publications of the Institute of Cognitive Science

Volume: 9-2004

Place of publication: Osnabrück, Germany

Date: October 2004

Editors: Kai-Uwe Kühnberger
 Peter König
 Petra Ludewig

Cover design: Thorsten Hinrichs

© Institute of Cognitive Science

Bachelor’s Thesis

Kernels for Structures

Christine Carl

Cognitive Science
University of Osnabrück

ccarl@uos.de
January 2004

Supervisors:
Dr. Barbara Hammer, University of Osnabrück

Prof. Dr. Volker Sperschneider, University of Osnabrück

Abstract

This work presents kernel functions for the classification problem using Sup-
port Vector Machines. Several approaches to the application of kernel tech-
niques for a machine learning classification task exist. Most of them, how-
ever, require a vector space as data input space and are consequently inap-
propriate if dealing with discrete structures like strings. Therefore, kernels
that are especially designed for handling strings as input data will be the
focus of this thesis. Different string kernels proposed so far in the literature
will be compared. A general subsuming notion of the building characteris-
tics of string kernels based on substructures will be developed and, with the
help of this general formulation, the effects of varying these kernels will be
examined. These effects concern the computational efficiency and the no-
tion of similarity the different kernels implement, as well as the experimental
results in practical classification tasks in the field of text categorization and
protein homology detection.

Contents

1 Introduction 1

2 Support Vector Machines 3
2.1 SVMs in the Linearly Separable Case 4
2.2 Mapping of the Input Data into a High-Dimensional Feature

Space in the Non-Linearly Separable Case 5
2.3 Generalization Error of SVMs 7
2.4 The Soft Margin Approach 8

3 Kernel Functions 9
3.1 What are the Characteristics of a Kernel Function? 9
3.2 Examples of Widely Used Kernels 10

3.2.1 The Polynomial Kernels 10
3.2.2 The Gaussian Kernels 11

4 Kernels for Structures 11
4.1 General Mathematical Design Criteria of Kernels 12
4.2 Kernels for Fixed Structures 12
4.3 Discrete Kernels for Arbitrary Sized Structures 12
4.4 Kernels Based on Probabilistic Models 13

5 Definitions and Notations 13

6 Some Issues about the Application of Kernels for Classifi-
cation 14
6.1 Text Classification . 14
6.2 Protein Classification . 15

7 Standard Bag-of-Words Kernel 17

8 Spectrum Kernel 18
8.1 Kernel Definition and Computation 18
8.2 Protein Classification with the Spectrum Kernel 22
8.3 Experiments . 23

9 String Subsequence Kernel 24
9.1 Kernel Definition . 24
9.2 Efficient Kernel Computation via a Dynamic Programming

Technique . 26
9.3 Experiments . 29

IV

10 Generalization of String and Tree Kernels 30
10.1 General Definition of String Kernels 30
10.2 Application of the General Definition for Various Kernel Ap-

proaches . 31
10.2.1 Spectrum Kernel . 31
10.2.2 String Subsequence Kernel (Standard SSK) 32
10.2.3 Extensions of the SSK 33
10.2.4 Mismatch String Kernel 38
10.2.5 Tree Kernels . 40

10.3 A Possible Taxonomy for Sequence Kernels 40

11 Conclusions and Future Research 45

12 Acknowledgements 47

13 References 48

V

1 Introduction

During the past decade there has been an explosion in development of com-
putation and information technology. With it have come vast amounts of
data in a variety of fields such as medicine, biology, or business. This data
can be highly complex, inconsistent, noisy and redundant, which makes it
difficult to evaluate and understand the information collected. Data min-
ing tries to find a response to the challenge of handling huge amounts of
information by reducing data and retrieving the high level conceptual infor-
mation of greatest interest. One important problem within this context is
the automatic classification of data into given classes.

Let us consider a typical classification task to motivate the use of classi-
fiers: the classification of given proteins as homologues. As a result of the
Human Genome Project and related efforts, DNA, RNA and protein data
accumulate at an accelerating rate. Mining these biological data to extract
useful knowledge is therefore essential. One way to describe and understand
the functionality of a protein is to detect similar (i.e. homologous) proteins
with already known properties by comparing their primary structures, i.e.
their sequences of amino acids. This problem can be formulated as the clas-
sification problem to map two given sequences of amino acids to one of the
two classes : 1, if the proteins are homologous and -1 otherwise.
Another typical classification problem we will be referring to throughout
this work is the area of text categorization, which is becoming increasingly
important, e.g. due to the world wide web.

As a consequence, it is necessary to develop fast and reliable automated
classification methods for these application areas. In this thesis, we will
focus on discriminative approaches, which can be informally described as
follows: Given a set of labelled examples, classification methods try to build
a model of the data as a function of attributes of the training data set.
The labels refer to target categories that should be learned by the classi-
fier. With the help of the learned model, it should be possible to classify
new, unseen data by defining whether the data belong to one of the target
classes. There exists a variety of discriminative machine learning algorithms
for classification problems like decision trees, neural networks, prototype
based classifiers, linear classifiers or the Support Vector Machine. In this
thesis, we will deal with the Support Vector Machine as one of the most
successful machine learning tools. The Support Vector Machine basically
consists of two parts: a simple linear classifier and a fixed nonlinear prepro-
cessing for the input data using a so-called kernel function.
Linear classifiers, in their original form, can only classify data that is linearly
separable. Vividly, this means that it is possible to classify all data input as
target or non-target by laying a hyperplane through the data that separates

1

target from non-targets. Often the input data, that is to be classified, can-
not be linearly separated, in this case the Support Vector Machine makes
use of the ”kernel trick”: Data is made linearly separable by first mapping
the data into a high-dimensional feature space. Since this mapping can be
computationally very expensive it can be done implicitly via the help of ker-
nel functions. A kernel function can be interpreted as a form of similarity
measure. Thus, it forms a natural interface to integrate prior knowledge
about the data and to extend the given learning method to complex data
types. The kernel functions will be the topic of interest of this thesis.

Kernel functions are a well known method used widely in the machine learn-
ing sector, not only for classification tasks -the context in which we will get
to know them- but also for regression, preprocessing, information extrac-
tion, etc. Most of these kernels are designed for data structures that can be
represented in a vector space. As a consequence, kernel methods, like most
pattern recognition tools, are mainly used in application areas with simple
data structures like in the case of picture processing. For some data, e.g.
sequences of amino acids of proteins or strings of characters in a text, these
kernel functions cannot be applied directly. Even though some preprocess-
ing techniques, like the bag-of-words approach for text categorization, exist
that enable us to work in a vector space representation of the data, these
techniques are computationally expensive and they are usually accompa-
nied by loss of information. For example, the bag-of-words representation
neglects the information regarding the word position in the text by repre-
senting documents only through word frequencies (with possibly additional
weighting or normalization). Therefore, a new class of kernel functions has
recently been developed: kernels which can directly deal with discrete struc-
tures of possibly arbitrary size. In this work, we will focus on string kernel
approaches that can handle input data represented as a sequence of symbols.
We will gain an insight into the possibilities such structure based kernels of-
fer for classification tasks by examining the different string kernel approaches
in detail.

The aim of this work is to provide a self-contained representation, unifica-
tion and discussion of an important subclass of kernels for strings, namely
kernels based on substructures. As an example, two of these approaches
will be presented in detail and illustrated by examples. Several questions of
further interest, such as the efficient computation of these kernels, will also
be tackled. Starting from these two kernel approaches, we will propose a
unified formulation for string kernels based on substructures which allows a
better comparison of the different existing methods. This will finally lead
us to define several criteria for a taxonomy of this class of string kernels.
Thereby, this work does not only incorporate and summarize an extremely
important and topical problem of the current literature in the machine learn-

2

ing sector, but it also outlines several criteria that provide guidelines for the
application of the various approaches.

Before introducing different types of kernels used for discrete structures in
section 4, we will give a short introduction to Support Vector Machines as a
kernel based machine learning method and explain why kernel functions are
extremely useful. Section 3 describes kernel functions in general, whereas
section 4 explains the specialities of different classes of kernel functions for
structures. Section 5 introduces some general definitions useful in the con-
text of string kernels. Section 6 holds a short overview of the terminology
and common methods used in text and protein classification and evaluation
of classification experiments. We will shortly present a standard approach
for text classification, the bag-of-words approach, in section 7, before ex-
amining in detail two string kernel approaches -the spectrum kernel and
the subsequence kernel- in section 8 and 9. In section 10 a general sub-
suming notion of the building characteristics of all string kernels based on
substructures is provided to describe the different effects of the variants.
In conclusion, we will discuss our results and give suggestions for future
research.

2 Support Vector Machines

To understand the function of kernel techniques it is helpful to get a general
notion of machine learning methods that make use of such kernels. We will
therefore give a short introduction to Support Vector Machines as an effi-
cient kernel based classifier, before dealing with the characteristics of kernel
functions themselves. Support Vector Machines (SVMs) are learning devices
that expand the idea of perceptrons as linear classifiers to systems that are
able to learn nonlinear functions in a kernel-induced, often high-dimensional
feature space. That is possible because the generalization performance of a
SVM does not depend, like for the perceptron, on the dimension of the input
space. Originally developed by Vapnik, SVMs are trained with a learning al-
gorithm from optimization theory which implements a learning bias founded
on statistical learning theory [27],[28].
SVMs address mainly two problems: pattern recognition and linear regres-
sion. For purpose of introducing kernel functions in the following, this thesis
focusses on SVMs as classifiers and more precisely on the maximal (hard)
margin approach1. We will first describe the linearly separable case, i.e. the
training sample is already linearly separable in the original input space.

1The soft margin approach is introduced at the end of section 1.

3

2.1 SVMs in the Linearly Separable Case

Suppose a training sample S consists of l labelled input vectors (xi, yi),
i = 1, ..., l with xi ∈ Rn and yi ∈ {±1}. In this case, xi denotes an instance of
the training input data, while yi indicate whether this instance is a target of
the concept to be learned (yi = 1) or not (yi = −1). The linear classification
rule f is defined via

f : Rn → {−1;+1}; x → 〈w, x〉+ b

with w ∈ Rn and b ∈ R. Our aim is to find a linear decision boundary
defined by the parameters w and b that classifies the training data x upon
its position relative to the boundary, i.e. f(x) > 0 (f(x) < 0) if yi = 1
(yi = −1). The resulting hyperplane 〈w, x〉 + b = 0 with normal vector w
and bias b should now be chosen in such a way to be as reliable on new test
data as possible. By scaling of the weight vector w we can resume the above
considerations to

yi〈w, xi〉+ b− 1 ≥ 0 ∀i. (1)

The hard margin approach tries to achieve good generalization by specifying
the hyperplane that maximizes the geometrical margin, i.e. the minimal dis-
tance between training data and the decision boundary has to be maximized
with respect to condition (1):

max
w,b

min
xi∈S

yi〈w, xi〉+ b

‖w‖ .

The vectors xi for which the equality holds in condition (1) have a minimal
distance to the hyperplane of 1

‖w‖ . They are called support vectors and
define the margin of the hyperplane (mS(f)) by mS(f) = 2

‖w‖ . Therefore,
the hyperplane that maximizes the geometrical margin can be calculated by
minimizing 1

2〈w, w〉 subject to condition (1). The Lagrangian function of
this optimization problem is

L(w, b, α) =
1
2
〈w, w〉 −

l∑

i=1

αi[yi(〈w, xi〉+ b)− 1] ∀αi ≥ 0. (2)

According to the Kuhn-Tucker-Conditions2, a convex function f with the
convex conditions yi(wixi + b) − 1 ≥ 0 has one global minimum in w* and
b*, if the complementary condition αi[yi(w∗x + b∗) − 1] = 0 holds. By
differentiating with respect to w and b, imposing stationarity, we get:

∂L(w, b, α)
∂w

= w −
l∑

i=1

yiαixi = 0, =⇒ w =
l∑

i=1

yiαixi,

2See N. Cristianini and J. Shawe-Taylor [5] (p.87) and R. Fletcher [6].

4

∂L(w, b, α)
∂b

=
l∑

i=1

yiαi = 0 =⇒ 0 =
l∑

i=1

yiαi.

The re-substitution of this relations into the primal Lagrangian (equation
2) provides the following dual problem:

Maximize
l∑

i=1

αi − 1
2

l∑

i,j=1

yiyjαiαj〈xi, xj〉, (3)

subject to
l∑

i=1

yiαi = 0, αi ≥ 0 ∀i. (4)

The optimal solutions a∗ for this quadratic programming problem can be
found with one of the common procedures of optimization theory. For a sur-
vey on convex optimization for SVMs see Burges [2] and Smola and Schölkopf
[23]. If a solution of the learning problem exists, the complementary condi-
tion of the Kuhn-Tucker-Conditions causes the optimal weight vector w∗ to
be a linear combination of the support vectors:

w∗ =
l∑

i=1

yiαixi =
∑

i∈sv

yiαixi,

where sv is the set of indices of the support vectors. The optimal value for
the bias b∗ has to be calculated via the primal constraints:

b∗ = −maxyi=−1(〈w∗, xi〉) + minyi=1(〈w∗, xi〉)
2

The optimal hyperplane can now be expressed in the dual representation:

f(x, α∗, b∗) =
l∑

i=1

yiα
∗
i 〈xi, x〉+ b∗ =

∑

i∈sv

yiα
∗
i 〈xi, x〉+ b∗ (5)

2.2 Mapping of the Input Data into a High-Dimensional Fea-
ture Space in the Non-Linearly Separable Case

If the training examples are not linearly separable because the underly-
ing classifying function is not linear, a change of representation of the
data by mapping the input space X to a high-dimensional feature space
F = {Φ(x)|x ∈ X}3 can make originally linearly not separable data linearly
separable. Changing the representation of the data is a common prepro-
cessing strategy in machine learning. Thereby, the image of x lives in a
high-dimensional feature space, but it is simply a contorted version of the
original input whose intrinsic dimension is that of the low dimensional input
space (for an example see figure 1).

3See section 3 Kernel Functions for an example.

5

z

z

1

2

1

1

a)

z2

z1

�
�
�
�

�
�
�
�

z

1

1

1

3

b)

Figure 1: Let us consider the XOR classification problem to illustrate the
benefits of a mapping of the input data into a high-dimensional feature
space. The XOR-problem refers to the representation of the Exclusive-OR
connection, that is usually represented by Â≺ in propositional logic. An
Exclusive-OR connection between two formulas C and D holds, if exactly
one of the two formulas is true (=1) and the other one is false (=0). If both
sentences are true (1,1) or both are false (0,0) the Exclusive-OR connection
does not hold. For instance, the sentence -You will either love chocolate or
you hate it, but you can’t do both.- represents an XOR-relation. Let the
two-dimensional vectors (0, 0); (1, 1); (0, 1); (1, 0) represent the four possible
relations between two formulas C and D. C and D can be both true (1,1),
both false (0,0) or the XOR-relation holds: (1,0); (0,1). The classifier has
to differentiate between the positive instances (1, 0) and (0, 1) and the non-
targets (1, 1) and (0, 0). As a) shows, it is not possible to define a hyperplane
that could correctly separate the data in a two-dimensional vector space
representation of the data. (Try to draw a straight line into the graphic
that separates the black points from the transparent ones.) However, if we
map each vector z = (z1, z2), z ∈ X from the input space X = R2 into the
three-dimensional feature space F = R3 by the mapping
Φ : X → F ; Φ(z) = (z1, z2, z1z2), we can lay a hyperplane through the data
points that classifies the instances correctly, as shown in figure b). Here, the
observer is looking at the graphic as if he is in the hyperplane represented
by the continuous, thick straight line. (Note that the indices of z refer to
the components of the vector z in this case.)

6

The decision boundary has now to be reformulated:

f(Φ(x), α∗, b∗) =
∑

i∈sv

yiα
∗
i 〈Φ(xi), Φ(x)〉+ b∗ (6)

As equation 6 shows, a new data point can be classified by simply calculating
the inner product of two feature vectors Φ(x). The inner product requires
the feature space to define any inner product. Therefore, the feature space is
a form of generalization of the Euclidian space, that is referred to as Hilbert
space in the literature [5]. In this work the scalar dot product is usually
used as example.
It should be noticed that the mapping of input data into a high-dimensional
feature space causes two problems: Firstly, the computation of the inner
product in the high-dimensional feature space becomes inefficient. This
problem can be dealt with by using kernel functions as introduced in section
3. The second problem, the generalization ability of a machine learning tool
in case of high-dimensional input data, will be tackled in the following.

2.3 Generalization Error of SVMs

The high dimension of the feature space the SVM works on poses the ques-
tion why this does not impoverish the generalization ability of the SVM as
it would normally do, e.g. for perceptrons. The number of free parameters
of both, the perceptron and the SVM, equals the dimension of the feature
space plus 1 (n + 1). These parameters are determined during training.
Both, the SSV and the perceptron generate similar solutions, namely hy-
perplanes that separate positive from negative examples. Because the SVM
searches for the hyperplane with maximum margin, its generalization ability
is better than the one of the perceptron. This becomes clearer if we compare
the generalization errors of both classifiers:

Theorem 1 (generalization error of a perceptron) Suppose H is the
hypothesis space of a perceptron and n is the dimension of the input space.
For any probability distribution P on the input space X × {−1, 1}, any hy-
pothesis f ∈ H that is consistent with the l training examples S will have
with probability 1− δ error no more than:

ε 6 ε(l,H, δ) =
2
l

(
(n + 1) log

2el

n + 1
+ log

2
δ

)

provided (n+1) 6 l and l > 2
ε (see N.Cristianini and J. Shawe-Taylor, p.56,

[5]).

Thus, the generalization error -given a confidence of 1 − δ and l training
examples- is roughly linearly increasing with the dimension of the input
space n. The generalization error of a SVM on the other hand, depends

7

only on the maximal margin independently of the dimension of the input
space:

Theorem 2 (generalization error of a SVM) Let H be thresholding real-
valued linear functions with unit weight vectors on the inner product space
X and fix γ ∈ R∗+. For any probability distribution P on X × {−1, 1} with
support in a ball of radius R around the origin, for a probability 1− δ over
l random examples S, any hypothesis f ∈ H that has a margin mS(f) > γ
on S has error no more than :

ε 6 ε(l,H, δ, γ) =
2
l

(
64R2

γ2
log

elγ

8R2
log

32l

γ2
+ log

4
δ

)
,

provided l > 2
ε and 64R2

γ2 < l (N.Cristianini and J. Shawe-Taylor, p.63, [5]).

The generalization error of the SVM depends above all on the number of the
training examples, (it decreases approximately linearly with the increase of
examples) and the proportion of R

γ , but it is dimension free and therefore al-
lows high-dimensional vector spaces without deteriorating the generalization
ability4.

2.4 The Soft Margin Approach

The criteria of maximizing the geometrical margin while developing a consis-
tent learning algorithm assumes that the training sets are linearly separable,
at least after mapping into a high-dimensional feature space. This is, for
instance, not the case if the training data is very noisy, i.e. if it contains a
lot of incorrectly labelled training examples. Some generalizing extensions
of the above presented SVM allow the consideration of noise in the training
data. These soft margin approaches seek at a trade-off between maximal
geometrical margin and minimal empirical error on the training set. For a
more precise formulation on soft margin approaches see (Cristianini [5]).

Since an explicit mapping Φ(x) into a high-dimensional feature space and
the calculation of its inner product is complicated and computationally ex-
pensive, one would like to introduce an alternative technique that circum-
vents these drawbacks. Kernel functions offer such an alternative and will
be discussed in the following section.

4For a detailed examination of this problem see [5].

8

3 Kernel Functions

The introduction of kernel functions provides a tremendous computational
advantage of SVMs for high-dimensional feature spaces so that a lot of effort
is done to develop and examine these functions.

3.1 What are the Characteristics of a Kernel Function?

Definition 1
K : Rn × Rn → R

is a kernel function if there exists a Hilbert space H and a mapping

Φ : Rn → H; x → Φ(x)

such that for all x, z ∈ Rn holds:

K(x, z) = 〈Φ(x), Φ(z)〉.

Hereby, 〈·, ·〉 denotes the dot product in the Hilbert space H. Note that in
this section we will refer to a vector x by x = (x1, ..., xn) with x ∈ Rn.

The dual formulation of the learning problem of SVMs depends only on the
inner products 〈xi, x〉 (see equation 3). Therefore, the input vectors x never
appear isolated and the mapping Φ(x) can be done implicitly with the help
of kernel techniques. If we can define a function K(x, z) that replaces the
inner product of the feature vectors, we can avoid the explicit calculation
of the inner product in a high-dimensional feature space. But how do we
know if the function K(x, z) satisfies the criteria of a kernel function as
introduced in the definition above? A sufficient condition of the function K
to be a kernel function is defined by the Mercer’s theorem:
If K : [a, b]n× [a, b]n → R is a symmetric and continuous function than K is
a kernel function, if

∀Ψ Ψ : [a, b]n → R;
∫

[a,b]n
Ψ(x)2dx < ∞

it holds∫

[a,b]n

∫

[a,b]n
Ψ(x)K(x, z)Ψ(z)dxdz ≥ 0.

In other words, the Mercer’s condition ensures that the prospective kernel
is actually a dot product in some space. In the following, some examples of
standard kernels used for vector spaces as input spaces will give the reader
an idea of how kernel functions may look like.

9

3.2 Examples of Widely Used Kernels

3.2.1 The Polynomial Kernels

Polynomial kernels are kernels of the form

Kp(x, z) = 〈x, z〉p for x, z ∈ Rn.

Suppose we choose the input data in R2 and K(x, z) = 〈x, z〉2. A feature
space F and a feature mapping Φ for this kernel could be, for example:

Φ : R2 → R3 Φ(x) = Φ(x1, x2) = (x2
1, x2x1, x

2
2).

Hereby, the indices denote the components of the vector x. Note that neither
the feature space F nor the mapping Φ is unique for a given kernel. The
above one could equally well be based on the mapping:

Φ : R2 → R4; Φ(x1, x2) = (x2
1, x1x2, x2x1, x

2
2).

More generally, the feature mapping for polynomial kernels is the set of all
products of p (in this example p = 2) factors that can be built out of the
components in the input vector, whereby each product can be weighted.
A component of a vector in the feature space can also be a sum of such
products.
More formally, let us denote wj = xjzj , and K(x, z) = (w1 + ... + wn)p. We
can explicitly define the mapping for any p and n:

Φ(x) = (φr1r2...rn(x))r1r2...rn , whereby
n∑

j=1

rj = p; rj ≥ 0.

φr1r2...rn(x) =
√

p!
r1!r2!...rn!

xr1
1 xr2

2 ...xrn
n ;

Since in this case the feature mapping is known explicitly, the proof that
K(x, z) is a kernel function can be done directly by calculating the inner
product for the feature vectors. We will prove that Kp(x, z) = 〈x, z〉p is a
kernel by showing that the Mercer’s condition holds:

∫
(

n∑

j=1

xjzj)p Ψ(x)Ψ(z)dxdz > 0, (7)

since the multinomial expansion of (
∑n

j=1 xjzj)p contributes to the factor-
ization of the left hand side of equation 7:

∫
(

n∑

j=1

xjzj)p Ψ(x)Ψ(z)dxdz

10

=
p!

r1!r2!...(p− r1 − r2...)!
(
∫

xr1
1 xr2

2 ...Ψ(x)dx)2 > 0.

Every homogeneous polynomial kernel of degree p has an underlying minimal
embedding feature space of

(
n+p−1

p

)
, if n is the dimension of the input space5.

If we would like to modify the homogeneous polynomial kernel to get all
polynomials up to degree p in one kernel, we would get the inhomogeneous
kernel K(x, z) = (1 + 〈x, z〉)p.

3.2.2 The Gaussian Kernels

Other often used kernel functions are the Gauss-kernels, also called Radial
Basis Functions:

Kσ(x, z) = exp−
‖x−z‖2

2σ2 with σ ∈ R as variance.

The embedding space of these kernels is infinite dimensional [2].

4 Kernels for Structures

Kernels like the Gaussian kernels require the input space of the data to
be a vector space. Since kernel based methods like the SVM are efficient
and precise classification devices, it would be desirable to use such methods
for classification tasks like text categorization or protein homology detec-
tion. However, these problems deal with discrete structures like sequences
of characters and therefore, the underlying input space X is not a vector
space, but a set of structures. The kernels presented in the following are
able to deal with these discrete structures, which can be word sequences and
other string-based structures, trees, graphs, as well as finite state machines
etc. As long as any kernel based approach succeeds to extract real-valued
features Φ(x), Φ(z) from the structures x and z in X and transform the
input space into a vector space F , kernel based methods like SVMs can deal
with the data. One can roughly distinguish four main directions of kernels
for discrete structures:

• principle design criteria of kernels and mathematical closure properties

• problem specific kernels with fixed structures

• structure based kernels of variable size

• kernels based on probabilistic models.

While the third one will be further examined in detail throughout this work,
all approaches will be outlined in this section.

5For a proof see C. J. C. Burges [2]

11

4.1 General Mathematical Design Criteria of Kernels

General mathematical design criteria of kernels for discrete structures and
their closure properties were established by D. Haussler [8] and C. Watkins
[31]. These characteristics form a basis for structure based kernels and
some kernels with an underlying probabilistic model. One important is-
sue Haussler and Watkins stated is, for example, that kernel functions can
be defined over general sets by assigning an inner product to each pair of
elements of the discrete structures in the feature space.

4.2 Kernels for Fixed Structures

These type of kernels allow only structures of a fixed size. Thus, structures
can be represented as finite dimensional vectors and they can be compared in
the standard way by referring to the elements at fixed positions. In addition,
specific features according to the considered structures can be added. The
approaches of S. Sonnenburg et al. [24] and A. Zien et al. [32] take local
correlations into account by allowing neighboring elements to contribute to
the elementwise match of the symbols of the two structures. Another kernel
for fixed structures, the P-kernel based on rare common substrings [29],
determines the closeness of two structures on the basis of common substrings.
This kernel compares subsets at the respective positional entries and, in case
of matching, the common substrings can be weighted according to the inverse
proportional of their probability, so that rare common substrings favor a high
similarity score between the sequences which are to be compared.

4.3 Discrete Kernels for Arbitrary Sized Structures

As for the P-kernel based on rare common substrings, the extraction of sub-
structures for comparison of two sequences is the main idea of the kernels
presented in detail in this work: discrete kernels for structures of arbitrary
size. These methods define, in principle, similarity via common occurrences
of substructures at arbitrary positions in the original sequences. The finite
set of possible substructures considered in the specific kernel forms the in-
dices of the feature vector, calculating the number of times the substructure
occurred. The different kernels alter with an optional weighting scheme for
different substructures, the efficiency of computation and the types of sub-
structures considered. These substructures of interest can be either only
consecutive substrings or substructures where gaps are allowed, substruc-
tures that require perfect or partial match or substructures weighted e.g.
according to their probability density. In this thesis, we will explain two
such kernels in detail and give an overview and comparison of several alter-
natives, whereby we will introduce a unified notation.

12

4.4 Kernels Based on Probabilistic Models

This approach starts from a probabilistic model of the data, where prior
information about the data is usually required. The kernel combines the
power of information extraction through statistical modelling methods with
the efficiency of a classifier like the SVM. The data can be compared either
by using parameters of the probabilistic model or by drawing up the classi-
fier directly from the probabilistic model itself. Examples for such kernels
include the TOP kernel as introduced in [24] and the Fisher kernel proposed
in [12], [13]. The latter one constitutes a popular state-of-the-art approach
used for various problems in computational biology and data mining.

5 Definitions and Notations

Before examining the characteristics of structure based kernels in detail, let
us begin with introducing some notation we will use in the following, if not
indicated otherwise:

Definition 2 (Strings) Let Σ be a finite alphabet. Any finite sequence x =
x1x2...xm of m characters from Σ, (xi ∈ Σ, 1 ≤ i ≤ m), for m = 0, 1, 2, ... is
a string, the empty string is represented by ε.
Let m be the length of a string. Then, the set of all strings of length m is
denoted by Σm, the set of all strings of arbitrary length by Σ∗:

Σ∗ =
∞⋃

m=0

Σm.

In the following, we will use a ∈ Σ to denote characters and s, t, u, v, w, x ∈
Σ∗ to denote strings. |x| will be the length of the string x and xu or xa the
concatenation of two strings, respectively a string and a character.

Definition 3 (Contiguous and noncontiguous substrings, suffixes
and prefixes)
Given a string x = uvw, then u is a prefix of x, v is a substring and w is
the suffix of x. If s = s1...s|s|, let v = s[i : j], or v v s for short, denote the
substring si...sj of s. A sequence u is a possibly noncontiguous subsequence
of s, if there exist indices i = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |s|, such
that uj = sij , for j = 1, ..., |u|, or u = s[i] for short. The length l(i) of the
window in s spanned by the subsequence u is i|u| − i1 + 1 (for an example
see figure 2).

13

i_3i_1 i_2 i_4 i_5

l(i)

U N C IT ON A R YF

Figure 2: The string functionary contains the substring funny. While the
contiguous string funny has the length |u| = 5, the length of the noncon-
tiguous substring is l(i) = 11.

6 Some Issues about the Application of Kernels
for Classification

As mentioned beforehand, most of the structure based kernel approaches
have been experimentally evaluated within two main application areas: text
categorization and protein classification. The following sections will refer
to some experimental results of several structure based kernels. For conve-
nience, we will shortly introduce various common methods and terminology
used within this context.

6.1 Text Classification

Reuters Dataset : This data set was edited by David Lewis (1987) and
contains stories from Reuters new agency. The database contains pre-
defined splits for training and test sets, which are to be classified ac-
cording to different topics the documents are about. The split used in
the approaches presented was the ’ModeApte’ split, which comprises
9603 training and 3299 test documents. Furthermore, it should be
mentioned that a Reuters category can contain as few as 1 document
for training respectively testing and up to as many as 2877 in the
training and 1066 documents in the test set.

F1-test : To evaluate the performance of a classifier two different aspects
have to be considered: Firstly, we would like a classifier to assign only
positive examples as targets and secondly, a classifier should recognize
all positive examples as targets. The F1-test is a performance mea-
sure that considers both aspects, called precision and recall. Before
referring to the F1-test we would like to have a closer look at these
two influences on performance:

A classification of one single instance can have four different outputs:
true positive (TP): The instance was classified correctly as a target.

14

false positive (FP): The item was assigned as positive example with-
out being one actually.
false negative (FN): A target that was not found by the classifier.
true negative (TN): A non-target that was correctly assigned as a
negative example.

We can now define precision and recall (n(y) being the number of
instances that were classified with the output specified in y):
Precision measures the portion of the assigned categories that were
correct:

p :=
n(TP)

n(TP) + n(FP)
.

Recall measures the portion of the correct categories that were as-
signed:

r :=
n(TP)

n(TP) + n(FN)
.

Naturally, if a classifier performed perfectly, it would have a precision
and recall of the maximal value 1, i.e. it would assign the correct cate-
gories and only the correct categories. Since this is often not the case,
we need performance measures for classifiers that take both, precision
and recall, into account.

The F1-test is a performance measure that evaluates a classification
by equally weighting precision and recall. It is defined as

F1 =
2pr

(p + r)

whereby p is precision and r recall. The F1-score falls in a range from
0 to 1, with 1 being the best score.

The F1 measure constitutes a single measure that is worth trying to
maximize on its own - considering the fact that one can get a perfect
precision score by always assigning zero categories6 or a perfect recall
score by always assigning every category.

6.2 Protein Classification

Remote Homology Detection refers to the problem of detecting homol-
ogy between proteins in cases of low sequence similarity in the pri-
mary structure, i.e. in the sequence of amino acids of the proteins.
Two sequences are said to be homologous if they share a common evo-
lutionary ancestor. Since we do not have access to ancestral protein
sequences, the homology detection task is necessarily inferential. It

6Hereby, we define 0
0

:= 1 for the precision score, if zero categories are assigned.

15

consists of classifying a given protein or protein family as a member
of a superfamily, i.e. all distantly related protein sequences in a large
unannotated database have to be found.

SCOP Database : The Structural Classification of Proteins (SCOP) [11]
database provides a description of the relationships of known proteins
structures in detail. The classification is based on hierarchical lev-
els: the first two levels, family and superfamily, describe near and far
evolutionary relationships on the basis of the percentage residues are
identical between the proteins, as well as further structural and func-
tional similarities. The third level describes geometrical relationships,
i.e. similarities in the major secondary structures. For the remote ho-
mology detection task as they are formulated for the kernels presented
in this thesis only the first two levels are relevant, since a classifica-
tion of proteins by the kernels presented here is based on the primary
structure of the proteins. The SCOP data base is used for evaluation
of the homology detection performance of a kernel: Usually a target
SCOP family is separated from the remaining families of a given su-
perfamily. While these remaining families serve as positive training
examples, negative training examples are chosen from outside the su-
perfamily’s fold. The proteins of the hold out family provide positive
test examples. Each kernel based classification of a test example is
considered as correct if it recognizes this target protein as a member
of the given superfamily. The SCOP database is publicly available at
http://scop.mrc-lmb.cam.ac.uk/scop.

ROC50 : With the help of ROC50 scores the performance of different clas-
sification methods can be compared. The ROC50 score is the area
under the receiver operating characteristic curve, a curve where the
fraction of true positives in the classification result is plotted against
the fraction of false positives. Because it is hard to compare two ROC-
curves, the area under the ROC-curve is used as a summary of the
ROC-curve in a single number. The index 50 indicates that the area
under the ROC-curve up to the first 50 false positives is considered.
This score yields higher values for a better separation of positives from
negatives, the value of 1 indicates perfect separation while a value of
0 would result, if none of the first 50 sequences selected as targets by
the algorithm would be a positive example.

16

7 Standard Bag-of-Words Kernel

Suppose we would like to determine the semantic similarity between the
following two sentences:

1. The girl could not decide which ketchup to buy for the barbecue -the
yellow, green or pink-white striped one.

2. If she should buy the green, the pink-white striped or the yellow ketchup
for the barbecue, the girl was unable to decide.

It is easy to observe that both expressions have nearly the same semantics,
even though their appearance is different because of variations in the choice
of words or the order of the expressions. Often, the semantics of a text
document can already be captured by some key words (like in this case
barbecue, ketchup, etc.), while other repeatedly occurring words like articles
or prepositions are ignored, a fact that is often exploited by search engines
in the internet. These observations lead to a standard kernel approach for
text classification: the bag-of-words kernel. This kernel, which is based
on standard text representation techniques of G. Salton et al. [19], was
introduced by T. Joachims [14]. The standard word kernel measures the
similarity of structures by calculating the occurrences of common words. It
is therefore especially designed for text categorization tasks.
The kernel underlies the simple assumption that two documents are similar
if they share common words while the word order in the structures can be
ignored for text classification. The feature vectors are sparse vectors that
are indexed by all possible words of the alphabet of words W , vector entries
define the number of times a word occurred in the document. Mostly, non-
informative words, called stop words, and punctuation marks are removed
because of their little significance for the content of the document. To
support the different significance of words, several weighting schemes can be
introduced, the most common being a tfidf weighting scheme; let tf be the
word frequency of a word in a document while n represents the total number
of documents in the training database and df the number of documents in
the database where the relevant word occurs, then the term frequency tf
is substituted by log(1 + tf) ∗ log(n/df) for each vector entry. The feature
mapping

Φ : X → F, s → Φ(s)

(X being the set of all documents),

whereby the u-coordinate φu(s) for each u ∈ W is given by

φu(s) = log(1 + tf) ∗ log(n/df),

takes into consideration that very common words are assigned little impor-
tance for similarity judgements, while rare words are given special attention.

17

8 Spectrum Kernel

In the case of text classification, declinations and conjugations or colloquial
language let the same word appear in many different forms. Without any
preprocessing methods, like stemming algorithms, the word kernel would
probably perform poorly. Consider the famous sentence from the movie
Casablanca: Here’s lookin’ at you kid. If we changed the colloquial expres-
sion into written English: Here is looking at you kid. a kernel that could
only deal with exact word matches could not catch the semantic similarity of
the sentences. As long as exact matches of words are required as document
similarity measure, the change of word forms, e.g. because of declinations or
conjugations, is a problem we would encounter frequently. To address that
problem, the bag-of-words kernel applies stemming algorithms and other
preprocessing algorithms. We can avoid the use of such preprocessing algo-
rithms through an approach that considers subsequences of the texts. For
instance, the subsequence lookin can still be matched with the word looking,
even if the last letter is missing in one of the two strings compared by the
kernel.
Such an approach based on substructures would furthermore widen the ap-
plication area of these kernels: A standard word kernel is restricted to lin-
guistic data sets. For biological databases, like in the case of protein ho-
mology detection, it is not applicable since word boundaries are missing in
structures like DNA sequences. One form of string kernel introduced by C.
Leslie et al. in [16], called the spectrum kernel, satisfies these considera-
tions and can be used for any sequence based classification problem: The
spectrum kernel is based on a k-spectrum of an input sequence, i.e. it con-
siders the set of all contiguous subsequences of an arbitrary fixed length k
contained in the input sequence. The spectrum kernel allows SVM classifi-
cation in linear time and in a general way without incorporating any prior
knowledge about the data.

8.1 Kernel Definition and Computation

Given an input space X of all finite length sequences of characters from an
alphabet Σ, and a feature space R|Σ|k of all permutations u of length k from
alphabet Σ, the feature map is defined by a vector indexed by all possible
sequences u. Every index stores the number of occurrences of the respective
subsequence in the sequence s of the input space:

Definition 4 (Spectrum Kernel))
The feature mapping is defined by:

Φ : X → R|Σ|
k
, Φ(s) = (φu(s))u∈Σk ,

18

where φu(s) is the number of occurrences of u in s. It is clear that this
feature map provides a weighting of subsequences of length k according to
the number of times they occur in the sequence mapped. The k-spectrum
kernel is then defined by the inner product:

Kspectrum(s, t) = 〈Φ(s), Φ(t)〉.

Since the feature mapping is defined explicitly in definition (4), it does not
have to be proved that the Mercer condition holds to verify that the above
definition is a kernel.
On the other hand, for an efficient computation of the kernel it would be
favorable to avoid the direct computation of feature vectors. Hence, the
following observation helps: Despite the large feature space each feature
vector is sparse, i.e. the number of non-zero coordinates of the vector for
an input sequence s is bounded by |s| − k + 1. This sparsity offers the
possibility to introduce efficient methods for computing the kernel matrix
of the training input sequences without an explicit representation of the
feature vectors.
A method of computation that is very easy to implement collects the set
of all substructures u actually occurring in the string s respectively t into
an array As respectively At. The arrays are then sorted and double entries
are summarized into one entry of the arrays. With the completed arrays
the inner product, and hence Kspectrum(s, t), can be computed dependent
on the length of the input sequences s and t. Since the effort of sorting
elements is O(n · log(n)), with n being the length of the documents, the
overall complexity of the kernel computation is O(n · log(n)).
A more efficient and advanced method that is widely used for sequence
matching problems is the construction of suffix trees. Suffix trees allow to
compute the kernel matrix in linear time. Leslie et al. do not provide a
detailed description of the suffix tree that is built for an efficient computa-
tion in this case. They just mention that the suffix tree is built out of ”the
collection of k-length subsequences” of s and t, and proclaim that the suffix
tree for one input sequence s has O(kn) nodes (whereby n is the length of
the input sequence s). The suffix tree stores at the k-depth leaf nodes the
number of occurrences of the subsequences in the sequence s, each subse-
quence is specified by the branch labelling from the root to the leaf. At this
point, we would like to go into further detail about the computation of a
spectrum kernel via suffix trees, so that the reader will get a notion what a
suffix tree looks like and how it is built.

A suffix tree is a data structure that allows us to solve many string processing
problems efficiently. For example the question, whether a string u occurs
in a string t can be solved in O(|u|) time, even though the whole sequence
t of length n has n(n + 1)/2 substrings. The spectrum kernel faces exactly

19

this matching problem since it has to be determined how often a substring
occurs in two sequences s and t. Having built the suffix tree for a sequence
s, it is easy to determine whether the subsequences of another string t match
with the ones in s7.
A suffix tree for a sequence s is built in a way that all subsequences of the
sequence s can be accessed most easily by following the appropriate path
starting from the root in the search tree. Since many substrings of the string
s may share common prefixes, they can share a common path from the root
of the suffix tree. Any search (sub)string must therefore be a prefix of a
suffix of s, if it occurs in s. (An illustration of two exemplary suffix trees is
given in figure 3.)
For a formal definition of a suffix tree according to Giegerich and Kurtz [7]
we have first to define an Σ+-tree:

Definition 5 (Σ+-tree) Let Σ+ denote the set of strings of a finite alphabet
without the empty string ε. An Σ+-tree T is a rooted tree with edge labels
from Σ+. For each character a ∈ Σ, every node k in T has at most one
a-edge k

aw→ k′,with w ∈ Σ∗. A string x is occurring in T if there exists a
path from the root to the leaf node marked by xu for some possibly empty u.
The set of strings occurring in T is referred to as words(T).

Definition 6 (Suffix tree) A suffix tree for a string t is a Σ+-tree T where
words(T) = {w|w is a substring of t}.

There exist different versions of suffix trees, two of them are important for
further considerations of this work:

Definition 7 (atomic vs compact suffix trees) A
A suffix tree is atomic, if every edge is labelled with a single character.
A suffix tree is compact, if every node is either the root, a leaf node or a
branching node.

Thus, a compact suffix tree is a smallest suffix tree possible. For illustrations
of an atomic and a compact suffix tree see figure 3.

The suffix tree needed to compute the above defined kernel should have
special properties: Since the spectrum kernel only considers subsequences
of the predefined length k, it would be most intuitive to build an atomic
suffix tree that contains at depth k all subsequences of length k. Since
subsequences of further length are of no interest the suffix tree could be cut at
depth k, so that the leaves denote the substrings of length k labelled through
the branches from root to leaf node. Furthermore, the leave nodes should
store the number of times the respective subsequence occurs in the sequence

7For a reminder on the linguistic terminology of suffixes and prefixes see definition 3
in section 5.

20

s

i

$

s

$

m i $ s

i s $ s i

$ s i s

s i s $

$

s

a)

missis$ is

$ sis$

$ s

sis$$is$

b)

Figure 3: An atomic (a) and a compact (b) suffix tree of the string missis$,
$ denotes the end of a string.

the suffix tree refers to, because that will be the relevant information for the
kernel computation.
Until now, we have assumed that every suffix tree is built out of one input
sequence. Now suppose we build one suffix tree out of all input sequences
of the training data set. To do so, we have simply to store all k-length
subsequences occurring in any one of the input sequences in the suffix tree8.
Remember, the important information for the kernel computation is just the
number of times the substrings of the input sequences occur. Therefore, at
every leaf node the single numbers of occurrences of the relevant subsequence
in each input string are stored together with a pointer to the appropriate
input string.
The kernel can now be easily computed by parsing the tree and building
the sum of the products of the counts stored in the leafs of depth k. That
means, if we want to compute the kernel value for the strings s and t, we
have to calculate the sum of the pairwise products of the two counts in the
leaf nodes that point to the sequences they belong to. The great advantage
of this procedure is that it is possible to compute the whole kernel matrix
with one traversal of the suffix tree, provided the tree is created out of all

8How we denote the end of the single sequences remains to be defined, e.g. the suffix tree
for all sequences is built by starting at the root for every new sequence or by introducing
the sentinel character $ to denote the end of one sequence.

21

sequences to be compared.

A suffix tree cannot only be parsed in linear time depending on the number
of nodes, but also the construction can be done in linear time as a function
of the number of nodes of the suffix tree. Weiner, McCreight and Ukkonen
presented linear algorithms of suffix tree construction, whereby Ukkonen’s
algorithm is the most comprehensible one, a left-to-right on-line algorithm
that maintains a suffix tree for t[1..i] at each step as i is increased from 1
to n. Since these algorithms are quite complex, we will not go into detail
of the construction and refer to Giegerich and Kurtz [7], who compare the
above mentioned different algorithms. It must be mentioned here that an
atomic suffix tree has O(n2) nodes, n being the length of the input sequence.
Therefore, an efficient computation of the spectrum kernel would have to use
a compact suffix tree with O(n) nodes to realize a linear kernel computation
with respect to the length of the input sequences. For simplicity of notation,
we have presented the atomic tree version, though the use of compact suffix
trees in this case is similar. Most important for the reader, however, is to
keep in mind that the computation of the spectrum kernel can be done in
linear time (depending on the length of the input strings) by the use of a
suffix tree.

8.2 Protein Classification with the Spectrum Kernel

The spectrum kernel, as introduced by C. Leslie et al., was first tested for
protein classification. We will therefore briefly describe the further pro-
cedure of this classification task with SVMs and present the experimental
results showing the performance of the spectrum kernel in comparison with
other standard kernels.
The parameters of the classifier to be determined are again w and b as in
section 2. Assumed the threshold b = 0, the classification of test examples
can simply be computed by

f(x) = 〈Φ(x) · w〉 =
∑

i∈sv

αiyiK(x, xi),

whereby the normal vector w is given by

w =
(∑

i∈sv

αiyiφu(xi)
)

u∈Σk

with sv as the set of indices of the support vectors. In the case of the
spectrum kernel the test sequences don’t need to be mapped to the high-
dimensional feature space, but the product 〈Φ(x) · w〉 can be computed
directly: The non-zero coefficients of the normal vector w are less than
mn entries, m being the number of training examples and n the length of

22

the largest input sequence, because the number of support vectors is much
smaller than the number of all training sequences. Therefore, the non-zero
coefficients can be stored in a look-up table with their index u indicating
the contributing k-length subsequences. For each k-length subsequence of
the test sequence x the classifier value f(x) is incremented by the amount
of the associated coefficient in the look-up table. The complexity of the test
phase is therefore O(n).

8.3 Experiments

Eventually, we will briefly sketch the experiments that C. Leslie et al. per-
formed and their outcome. The spectrum kernel was tested for a remote
homology detection problem over the SCOP database9 with a soft margin
optimization algorithm. C. Leslie et al. used relatively small spectrum ker-
nels with k = 3 and k = 4 and tested performance with the above introduced
unnormalized kernel and a normalized kernel given by

KNorm
spectrum(s, t) =

Kspectrum(s, t)√
Kspectrum(s, s)

√
Kspectrum(t, t)

.

Leslie et al. used the ROC50
10 scores to compare the performance of the

spectrum kernel with the Fisher-SVM method (introduced in section 4.4),
and two other standard remote protein homology detection methods ; SAM-
T98 iterative Hidden Markov Model [15] and PSI-BLAST [1]. Thereby, the
normalized spectrum kernel with k = 3 showed slightly better results than
the other variants of the spectrum kernel. Compared with the other remote
homology detection methods using the two-tailed signed rank test [10], the
SVM-Fisher kernel performed significantly better than the spectrum kernel
with a p-value of 0.042, but the spectrum kernel shows comparable per-
formance with the other methods. Hence, the spectrum kernel seems to
represent a method qualitatively equal to state-of-the art protein classifica-
tion methods, especially if one considers that no prior biological knowledge
was incorporated into the kernel design. This could be an advantage over
methods like the Fisher kernel that use a generative model.

9The SCOP database is introduced in section 6.
10For a description of the ROC50 score see section 6.

23

9 String Subsequence Kernel

Let us remember the example in section 8, this time with a small variation:
This time the sentences

1. The woman is lookin’ at you kid.

2. The women are looking at you kid.

should be compared. If we assume, for simplicity of illustration, that the
spectrum kernel most probably will match only within single words, the
spectrum kernel could still match small variations at the word boundaries
(like lookin’ and looking) but would have difficulties in comparing subse-
quences with a differing letter in the middle of the sequence (like woman
and women). In this case, an extension of the spectrum kernel that could
match the subsequences wom-n, while ignoring differing characters in be-
tween (e instead of a) might improve performance. In the case of text clas-
sifications, slight changes in the middle of a word can occur for plural forms,
misspellings or for conjugations of verbs, like in the German language if the
present form of the verb find is replaced by the conjunctive: e.g. Er fand es
gut. vs. Er fände es gut. For subsequence matches across word boundaries
a kernel considering noncontiguous subsequences might, in general, enlarge
the tolerance towards noise by accepting more matches between similar but
not exact subsequences. Protein classification problems could benefit from
such an approach as well, for example, in the case of proteins that con-
tain similar amino acid sequences that differ only elementwise. Therefore a
kernel was developed by Lodhi et al. that takes the above considerations
into account: The string subsequence kernel (SSK). It extends the spectrum
kernel by examining noncontiguous common substrings.

9.1 Kernel Definition

The subsequence kernel as introduced by Lodhi et al. in [18] is the inner
product of feature vectors generated by not necessarily contiguous subse-
quences of length k. Hereby, a text is considered as one sequence including
word spaces but ignoring punctuation marks. The string subsequence kernel
uses only symbol sequences without incorporating any domain knowledge.
The feature space consists of the set of all k-tuples out of a finite alphabet
Σ. Thus, the set contains |Σ|k elements. That means all permutations of
k symbols form the dimensions of the feature space. The feature vector of
a document assigns to each of the subsequences the number of occurrences
of these substrings in the text, whereby the subsequences in the document
can be noncontiguous and hence, are weighted by a factor exponentially
decaying with their full length in the text.
The kernel defines the similarity of two documents by the frequency and
compactness of their common subsequences ignoring all information of word

24

order in the documents. The idea of this comparison is that two documents
have a similar content, if they have many substrings in common. Thereby,
the degree of continuity of each substring in the document sequence de-
termines how much it contributes to the similarity. A decay factor λ of an
arbitrary value of the interval [0, 1] is used to determine how compactly each
substring is embedded in the text, it grows exponentially with the length of
the respective substring. The kernel is formally defined as follows:

Definition 8 (String Subsequence Kernel (SSK)))
Remember that a noncontiguous substring u of a string s is denoted by u=s[i]
(see section 4, Definition 3). The feature mapping Φ over the feature space
F = R|Σ|k is defined by:

Φ : X → F, s → Φ(s)

whereby the u-coordinate φu(s) for each u ∈ Σk is given by

φu(s) =
∑

i:u=s[i]

λl(i) for some λ ∈ [0, 1].

The kernel as the inner product of the feature vector of the strings s and t
is consequently:

Kk(s, t) =
∑

u∈Σk φu(s)φu(t) =
∑

u∈Σk

∑
i:u=s[i] λ

l(i)
∑

j:u=t[j] λ
l(j)

=
∑

u∈Σk

∑
i:u=s[i]

∑
j:u=t[j] λ

l(i)+l(j).

(8)

The first sum of equation 8 refers to all possible subsequences of length k,
the other ones consider the respective non-continuous subsequences of the
strings s and t.
Like in the case of the spectrum kernel, because the feature mapping is de-
fined explicitly, the Mercer’s condition does not have to be verified.

Let us consider an example to get a concrete impression:
Assume we want to decide the grade of similarity between the three nephews
of Donald Duck: Huey, Dewey and Louie, who are called Tic,Tric and Trac
in German. For a kernel that considers subsequences of length 2, given an
alphabet Σ = {t, i, r, c, a} we obtain a |Σ|2 = 25 dimensional feature space,
where the sentences are mapped as follows (zero-entries in the same coordi-
nates of all three feature vectors are omitted):

25

t− i t− a t− c t− r r − i r − c r − a i− c a− c

φ(tic) λ2 0 λ3 0 0 0 0 λ2 0
φ(tric) λ3 0 λ4 λ2 λ2 λ3 0 λ2 0
φ(trac) 0 λ3 λ4 λ2 0 λ3 λ2 0 λ2

Thus, the kernel between Tic and Tric is λ5 + λ7 + λ4. The similarity score
between Tic and Trac is less, because the subsequence t− c is the only one
for which both sequences have non-zero entries in their feature vectors. This
kernel value is only λ7.
By the choice of the decaying factor we can model the kernel properties: A
very small decaying factor will penalize longer noncontiguous subsequences
considerably, so that only the continuous subsequences have a great influence
on the kernel value. For example, for a decaying factor λ = 0.5, each
additional gap symbol will contribute to dividing the respective continuous
feature value by two. On the other hand, a decaying vector of the value
λ = 1 would treat any noncontiguous subsequence with an arbitrary number
of gaps in the same way, thus gaps would not be penalized at all, which, of
course, would be not a very reasonable choice.

9.2 Efficient Kernel Computation via a Dynamic Program-
ming Technique

A direct computation of the features by searching each possible subsequence
of length k in the two input strings s and t would be of order of |Σ|k for
time and space, whereby |Σ|k is the number of features involved. This is
infeasible already for small values of k. Thus, a more efficient possibility
for the kernel computation is needed. For a recursive formulation of the
problem, that simplifies the computation of the kernel and therefore reduces
the computing time, an additional function has to be introduced:

K ′
l(s, t) =

∑

u∈Σl

∑

i:u=s[i]

∑

j:u=t[j]

λ|s|+|t|−i1−j1+2

for l = 1, ..., k − 1,

whereby i1 and j1 are the indices of the input strings s and t where the first
character of the substrings u = s[i] and u = t[j] occurs.
Furthermore, we set:

K ′
0(s, t) = 1.

The difference between this auxiliary function and the original kernel is that,
instead of counting the length of the particular subsequences of the feature
space within the input sequences, it considers the length from the beginning
of the subsequence to the end of the input strings.

26

Theorem 3 (Recursive computation of the subsequence kernel))
The following recursive computation scheme is valid:

1. Base cases:

(a) K ′
0(s, t) = 1, for all s, t ∈ Σ∗

(b) K ′
l(s, t) = 0, if min(|s|, |t|) < l

(c) Kl(s, t) = 0, if min(|s|, |t|) < l

2. K ′
l(sa, t) = λK ′

l(s, t) +
∑

j:tj=a K ′
l−1(s, t[1 : j − 1])λ|t|−j+2

for l = 1, ..., k − 1, and a ∈ Σ

3. Kk(sa, t) = Kk(s, t) +
∑

j:tj=a K ′
k−1(s, t[1 : j − 1])λ2.

Note that this formula is based on the main idea that for each added charac-
ter in the input string the kernel incurs a factor λ for each additional length
unit. The kernel computation uses two kinds of recursions, one that short-
ens the subscript of the kernel respectively of the auxiliary function until
it becomes smaller than the subsequences considered and one that consecu-
tively reduces the length of the subsequences considered by the kernel and
the auxiliary function.
The computation of the auxiliary function K ′

l(sa, t) is based on a recursive
call without the last character a, whereas the second term as in (3) has to
supplement all terms for the subsequences of k − 1 characters where a is
the kth character of both sequences. The first term in (2) is multiplied by λ
because every index of the feature vector of s that builds the kernel K ′

l(s, t)
will be multiplied by a single factor λ, if a is concatenated with the string
s and therefore prolonged by one character. The kernel Kl−1(s, t[1 : j − 1])
in the second term of equation (2) will get the value 1 for every recursion
descent as soon as l = 0. The factor λ|t|−j+2 then provides the value for the
length of the string of the previous recursive call and hereby yields |t|−j +2
factors λ for each fewer character when the string sa is reduced to s within
the recursion.
The kernel Kk(sa, t) in (3) is built by a kernel whose one argument misses
the last character a and by a second term that considers all additional com-
mon subsequences that would occur in both feature vectors of s and t, if
the missing character in the first term of (3) would also be considered: The
second term of (3), therefore, counts all common subsequences of k−1 char-
acters of s and t where the kth character is the missing a in the first term
of (3). This last character a of the k-sequence is considered by a factor λ2

because each one of those common subsequences will end with the character
a and will therefore prolong each subsequence by the length of 1. Thus,
K ′

l−1(s, t) adds all those subsequences to a kernel Kl(s, t) that would be ne-
glected, if the last character a of the string sa of the kernel Kl(sa, t) did not
exist. The second term of equation (3) allows to understand why we need

27

the auxiliary function K ′
l(s, t) that is counting the length from a particular

subsequence to the end of the strings s and t: the auxiliary function is here
called by the input strings s and t[1 : j − 1] which ensures that for each
additional (k−1)-subsequence the correct amount of factors λ is added. Let
us reconsider the previous example, this time calculating the kernel of the
strings tic and tac explicitly:

Example 1 (Kernel computation of the strings tic and tac)

If we compute the kernel K2(tic, tac) by directly computing the feature
vectors of both strings, we get the following feature vectors ignoring the
indices of the vectors where both vectors have zero entries for simplicity:

We denote: Φ(s) = (φti(s), φta(s), φic(s), φac(s), φtc(s))
then Φ(tic) = (λ2, 0, λ2, 0, λ3),

Φ(tac) = (0, λ2, 0, λ2, λ3).

The kernel is then defined by

K2(tic, tac) = 〈Φ(tic),Φ(tac)〉 = λ6.

The recursive computation of the same kernel is as follows: (Remember
that tacj = c denotes that the string tac contains the character c at
index j.)

(1) K2(tic, tac) = K2(ti, tac) +
∑

j:tacj=c K ′
1(ti, tac[1 : j − 1]λ2

(2) K2(ti, tac) = K2(t, tac) + 0
since the string tac does not contain any character i.

(3) K2(t, tac) = 0 (base case)
(1.1)

∑
j:tacj=c K ′

1(ti, tac[1 : j − 1])λ2 = K ′
1(ti, ta)λ2

= λ2 · λK ′
1(t, ta) + 0

since the string ta does not contain any character i.

(1.1.1) K ′
1(t, ta) = λK ′

1(ε, ta) +
∑

j:taj=t K ′
0(ε, ε)λ

|ta|−1+2

= 0 + 1 · λ3

Inserting in 1.1 and then 1 yields:

K2(tic, tac) = 0 + λ6 = λ6

28

The complexity of computation of the SSK for the strings s and t according
to the recursive formulation above is O(k|s||t|2), where k is the length of
the subsequences (in their contiguous form). This is only valid, if a dynamic
programming approach is used where all the computed terms of the faculta-
tive function K ′

l(s, t) are reused. This is evident because there is a sum over
t with k|s||t| different terms. Leslie et al. propose a more efficient extension
of the recursive computation of the SSK that measures the similarity of two
documents in time proportional to O(k|s||t|), but we will not go into further
detail here.

9.3 Experiments

The series of experiments conducted by Leslie et al. satisfy three main
objectives:

1. Compare the performance of the SSK to state-of-the art text classi-
fication methods like the spectrum kernel, also called n-grams-kernel
(NGK)11, and the standard bag-of-words kernel (WK), introduced in
section 7. The spectrum kernel and the WK are both linear kernels.
For the WK the documents are indexed by words with a variant of the
tfidf weighting scheme, namely log(1 + tf) ∗ log(n/df) (with n being
the total number of documents, tf represents the term frequency and
df the document frequency).

2. Examine the influence of varying the tunable parameters k (length)
and λ (weight) on the kernel outcome.

3. Investigating advantages of combinations of different kernels.

For training and test phase a subset of documents from the Reuters-21578
data set was used. It comprised 470 documents of which 380 were train-
ing examples and 90 documents were texts of the test set. Preprocessing
of the documents was in all cases limited to the removal of stop words and
punctuation marks. The categories to be learned and tested were ”earn”,
”acquisition”, ”crude” and ”corn”. For evaluation, the F1 performance mea-
sure (see section 6) given by 2pr/(p+ r), where p is precision and r is recall,
was used.
Pointing at aim 3, two combinations of the SSK with different parameters
were examined, as well as a combination of the NGK and the SSK. Since
out of the tested combinations only the combination of variations of the
SSK with different length parameter k provided some improvement of per-
formance over the individual kernels, we will not go into further detail here.
The two other objectives can be pursued at the same time by comparing

11Note that we refer to n-grams as subsequences of a length k, i.e. in this work we
should say k-grams to avoid confusion.

29

the performance of the SKK with different parameter values to the respec-
tive other kernels. Thus, firstly, the length of the considered subsequences
(k) in a range of 3 to 14 for the SKK as well as the spectrum kernel was
varied while fixing the value of the weight decay parameter to 0.5. The
performance of all these variants of the three kernel methods was compared.
Secondly, the results for varying weight decay parameter between the values
0.01 to 0.9 with a fixed length k set to 5 were examined. The results showed
best generalization performance of the SVM classifier in conjunction with
the SSK for a sequence-length between 4 to 7, whereas the λ-value influence
on performance differed with each text category. However, the F1 numbers
always reached a peak at a certain λ-value and decreased for higher ones.
What seems to be most important, the generalization performance of the
SSK was comparable to the spectrum kernel and even better in most cases
than the classical text representation technique, the WK.

10 Generalization of String and Tree Kernels

Having described two approaches of kernel functions in detail, we would like
to give an overview of some kernels presented in the literature. We hereby
aim in providing a general formulation of the kernel’s building principles
that the different approaches offer. On the basis of this general definition,
we will examine which kind of variations are possible with which type of
kernel and evaluate the effects of these variations.

10.1 General Definition of String Kernels

One can identify the following design criteria behind the string kernels we
have just introduced: A feature space expansion over all features u, v pos-
sibly occurring in the data structure results in a formulation of a kernel as
a sum over all features u in a predefined set of features F , e.g. the set of
strings of length k. To extract the relevance of the feature for the data
structure examined, the features have to be weighted in some sort depend-
ing on the input data. For this purpose, a weighting function w, possibly
simply counting the number of occurrences of the features, is introduced.
Finally, the classification of the data structure requires the introduction of
a similarity measure that compares two data structures. This is realized by
a function d(u, v) that compares the single features occurring in the input
data which should be classified. These considerations lead to the following
equation:

Definition 9 (General Definition of String Kernels) A general simi-
larity measure K : X × X → R from the set Xof documents to the real

30

numbers is defined by

K(s, t) :=
∑

u,v∈F

ws(u) wt(v) d(u, v)

where F is a fixed set of features, w·(·) : X×F → R is the weighting function
and d : X ×X → R is the similarity function.

Thereby, u and v are all possible features in the relevant feature space F
and ws(u) respectively wt(v) are the weights these features are assigned
according to the input strings s and t. The terms ws(u) respectively wt(v)
weight the features a priori or after seeing the data, e.g. according to the
frequency of the features in the input string or the length of the subsequences
that contain the feature for noncontiguous subsequences. In the simplest
case they determine whether the relevant feature is actually present in the
input sequence. The function d(u, v) depicts the similarity of u, v; as the
reader will notice, this function will often be chosen to denote the identity
function written as the Kronecker delta:

d(u, v) = δuv =
{

0 for u 6= v
1 for u = v

The above equation does not always satisfy Mercer’s condition for kernels
and therefore it yields not necessarily a kernel. However, the definition (9)
always constitutes a kernel, if the function d(u, v) denotes a kernel.
We will get a better idea of the function of the different terms in the general
definition, if we have a closer look at the choice of the weights and the simi-
larity function d(u, v) for each kernel approach. Two exemplary sentences
might help to illustrate the different comparative methods of the various
kernel approaches:12

Example 2 He comes to look at the colorful jelly beans.

Example 3 He came and looked at the colourful jellies.

10.2 Application of the General Definition for Various Ker-
nel Approaches

10.2.1 Spectrum Kernel

As introduced in section 8 the spectrum kernel considers subsequences of an
input sequence. Thus, in case of linguistic data input, it is able to catch se-
mantic similarities without exact word matches in the two input sequences.

12For sake of comprehension and illustration the examples we present are restricted to
the area of text classification. Please note that we hereby do not claim that these kernels
should be used favorably for text classification, because they are, in most cases equally
suitable for other application areas like remote homology detection of proteins.

31

Concerning the above example, a spectrum kernel that considers subse-
quences containing 4 symbols can match subsequences like look (example
2) and looked (example 3) by matching their common subsequence look.
(The same holds for the word jelly (example 2) and jellies (example 3)). To
consider only substrings of a predefined length k, the kernel is built out of a
sum over all possible subsequences of the alphabet of length k. The weights
ws(u) = ns(u) and wt(v) = nt(v) denote the frequency of the contiguous
subsequences that actually occur in the input strings. The function d(u, v)
checks the identity of u and v: This yields the following kernel equation:

Kspectrum(s, t) =
∑

u,v∈Σk

ns(u) nt(v) δu,v.

10.2.2 String Subsequence Kernel (Standard SSK)

Let us again refer to the above examples 2 and 3: A spectrum kernel cannot
match words that origin from the same stem but change characters within
themselves like different verb forms of irregular verbs (come and came) or
different spellings of a word (colourful and colorful). The SSK extends the
spectrum kernel in this sense by considering noncontiguous subsequences.
For instance, a SSK that considers subsequences of a length of three sym-
bols could match the subsequence c-me simply considering the gap as an
additional penalizing factor.
As described in section 9, the SSK counts occurrences of possibly noncon-
tiguous subsequences of a fixed number of symbols weighted by a decaying
factor according to the length of the subsequences as they occur in the docu-
ment. Like for the spectrum kernel, a sum over all consecutive substrings u,
v of the alphabet Σ restricted to length k is built. The information about
non-contiguity of the substrings actually occurring in the input strings is
handled via the weights ws(u) and wt(v); they denote the frequency of the
feature actually present in the input sequence but also weight each present
substring by an exponentially decaying factor λ according to its density in
the input string, i.e. the length of the subsequence (l(i)) that contains u
respectively v 13 in s respectively t. Again, the function d(u, v) determines
the identity function of u and v. The kernel is calculated as follows:

KSSK(s, t) =
∑

u,v∈Σk

∑
u=s[i] λ

l(i)
∑

v=t[j] λ
l(j) δu,v

with:
d(s, t) = δu,v

ws(u) =
∑

u=s[i] λ
l(i)

wt(v) =
∑

v=t[j] λ
l(j)

(9)

13Remember: If u = s[i] is a noncontiguous substring, l(i) denotes the length that u
spans in the sequence s.

32

One can also consider the kernel as a sum over non-consecutive subsequences
of undefined length. The number of exact matches of those substrings can
be counted via the weights. In this case, the kernel sum is not generated
over the set of possible features but the distance measure d(u, v) has to en-
code the occurrences of the noncontiguous feature subsequences of length k:
Thereby, the first and the last element of v respectively u are matched and
all common k-length feature sequences occurring in v and u are considered
and penalized according to the length of the corresponding subsequence u
respectively v. However, a distance measure over sequences of undefined
length seems to be computationally too expensive, so that we will stick to
the first representation of the SSK.

Taking these two kernels as a basis one can consider variations by varying the
parameters of the kernels described by definition 9. Firstly, to strengthen the
resistance of a kernel against noise in a classification task the requirement
for exact matches of features in the input strings can be loosened by allow-
ing mismatches. Secondly, one can vary the granularity of the elements of a
string kernel, e.g. instead of comparing single characters for an elementwise
match of a subsequence with a feature one can treat syllables or even whole
words as elements a feature is built of. This has major effects on the com-
putational efficiency, for example. In the following, we would like to explore
and compare some of the existing approaches that realize these variations
on the basis of the general definition 9, before introducing a taxonomy for
string kernels based on substructures.

10.2.3 Extensions of the SSK

The Syllable Kernel A main drawback of the string subsequence kernel
is its immense computational cost, which increases quadratically with the
size of the data. On data sets where the string subsequence kernels have to
be approximated to reduce computational complexity, a variation of the SSK
might be beneficial; the syllable kernel, that examines the data on syllable
level instead of on character level, shortens computing time by compressing
the data: The syllable kernel has the same restrictions to the weight factors
and the distance measure as the string subsequence kernel except that the
subsequences considered are built out of syllables as atomic units and not
characters. It has, therefore, the same representation as the SSK in equa-
tion 9, whereby the alphabet Σ consists here of syllables instead of single
characters. Note that this kernel is designed preferably for text classifica-
tion tasks, because syllables do not naturally occur in other data sets like
sequences of amino acids. Like the SSK, this kernel replaces certain pre-
processing techniques like lemmatization by still finding matches for similar
words where only certain syllables differ, i.e. words like look-ed and look
of the examples 2 and 3 would still contribute to a matching subsequence

33

since the syllable (look), that represents the stem, remains the same. On
the other hand, misspellings or changes of one symbol in a word (like from
come to came) cannot be taken into consideration by this kernel.

Word Sequence Kernel The word sequence kernel is a sequence kernel
like the original SSK operating on the word (possibly word stem) level.
Cancedda et al. showed that for categorization with the help of string kernels
on character level the highly discriminant features, i.e. the features u with
a high absolute weight in the linear decision :

|wu| =
∣∣∣∣
∑

j

αjyjφu(xj)
∣∣∣∣

are often subsequences that match on more than one word [3] (for an exam-
ple see figure 4). Thus, a kernel that works on word level instead on syllable
or character level and that takes the order and locality of words into ac-
count seems to be beneficial for text categorization. Furthermore, the word
sequence kernel can be calculated more efficiently than the SSK and even
the syllable kernel. The word kernel is computed in a similar way as the
SSK by replacing single characters by words. This causes a high increase
in dimension of the feature space since the feature space should contain all
existing words of the data sets the kernel has to deal with. This leads to
extremely sparse implicit representations in the feature space and therefore
small similarity scores for sequence matches. To prevent the similarity score
of the kernel from being too small, a combination of kernels that considers
up to k-length subsequences is considered, whereby every single kernel is
weighted according to optimization methods like cross-validation:

Kword(s, t) =
k∑

p=1

µ1−pK ′
p(s, t)

with
p = 1, .., k. and µ ∈ R+

K ′
p(s, t) : word kernel that considers solely features of length p

Thus, the word kernel requires the same formulation as the SSK, with the
extension to sum up over a combination of kernels (This time, Σ denotes
the finite alphabet of words.):

Kword(s, t) =
k∑

p=1

µ1−p
∑

u,v∈Σp

∑

u=s[i]

λl(i)
∑

v=t[j]

λl(j) δu,v

with µ ∈ R+,

34

S ERV E D D OTI CE RC E AM

k=8

Figure 4: Single features of a string kernel may match parts of consecutive
words. In this way, the locality of the words is preserved in the kernel
representation (never cream ice instead of ice cream).

By the parameter µ the different subsequences lengths can be weighted rela-
tively: the bigger µ, the smaller is the influence of multi-word matches. µ
should be chosen in a range of [0, 3], for larger values the effects of using a
word kernel that tries to match multiple words would vanish almost com-
pletely14. Before combination the single kernels are sometimes normalized
to prevent a weighting because of length of the subsequences considered.
Finally, it should be mentioned that for a good performance of the word
kernel a certain kind of preprocessing like lemmatization and part-of-speech
tagging is necessary; while the standard SSK and the syllable kernel gener-
ate some sort of morphological normalization the word kernel obviously does
not. Without any preprocessing techniques the two sentences of example 2
and 3, that are semantically very similar, could indeed hardly be matched.
Other variations of the SSK do not refer to the change of scale, i.e. char-
acters, syllables or words might be considered as atomic units, but these
kernels extend the standard version of the SSK to allow soft matches or
different weighting for different symbols.

The String Kernel Weighting Different Symbols with Different
Decay Factors (SSK with DDF) This kernel defines a priori different
values for λ for each atomic unit, e.g. characters or syllables the subsequence
kernel is built of. With this kernel, some building units that one considers
of greater importance for a meaning of a sequence can be assigned a higher
weight. The kernel is computed in the same way as the original SSK, the
components of ws(u) and wt(v) only do not decay exponentially with the
length of the substring for a unique λ-value, but with the product of the
different weights each single symbol is assigned. For example, let us consider
the original SSK, that computes a kernel over subsequences of characters.
A feature nap for the string narcolepsy that would receive a weight of λ8 in

14µ = 0 would recover the bag-of-words kernel with

µ1−p =

{
00 = 1 for p = 1
0 for p > 1

35

the original SSK would now be assigned the weight λnλaλrλcλoλlλeλp. The
whole kernel is computed as follows:

KSSKwλ(s, t) =
∑

u,v∈Σk

∑

u=s[i]

∏

i1≤q≤i|u|

λsq

∑

v=t[j]

∏

j1≤h≤j|v|

λth δu,v

with λsq ; λth ∈ [0, 1]

It should be mentioned that in case of text classification a symbol dependent
decay factor seems to be more reasonable for word or syllable kernels. On
syllable level, for instance, syllables like common verb endings (e.g. the
ending ing in a present participle (running, laughing, playing) could be
assigned a lower weight than syllables constituting stems that contain the
meaning of a verb (e.g. run, laugh, play). On character level, however, a
reasonable assignment of weights for each letter of the alphabet seems to be
more difficult.

The String Subsequence Kernel with Independent Decay Factors
for Gaps and for Symbol Matches (SSK with DDFGS) The pre-
viously presented kernel does not differentiate, if an atomic unit associated
with a certain decay factor is actually a matching symbol or an element of a
gap. However, it would be reasonable to penalize highly relevant elements, if
they occur in a gap by use of a small decay factor and, on the other hand, to
reward important matching symbols with a high decay factor. For example,
let us consider the sequence ice cream with chocolate. Weighting the single
elements according to their part-of-speech we could assign with a high decay
factor (close to one), if it appears in a gap, but a low matching score (close to
zero), if it is part of the feature. As an extension of the previous kernel, this
kernels’s formulation differs from the above presented kernel only in the λ-
values of the weights: For example the weight ws(u) =

∑
u=s[i]

∏
i1≤q≤i|u| λsq

of the above kernel is replaced by:

ws(u) =
∑

u=s[i]

∏

i1≤q≤i|u|,sq∈u

λm,sq

∏

i1<p<i|u|,sp /∈u

λg,sp

with λm,sq ; λg,sp ∈ [0, 1]

Here, λm,sq denotes the weights for a specific element in the feature that
matches with one of the input strings, λg,sp determines the weight by which
a symbol of the feature is penalized, if it does not occur in the data. Let
us briefly examine the influence of these parameters on the kernel: If we set
λg = 0 we recover the spectrum kernel, where only contiguous subsequences
are considered, setting λg = 1 allows any number of gaps, and λg = 1− λm

implements an IDF-weighting scheme.

36

The String Kernel with Soft Matches (Soft Kernel) In the original
string subsequence kernels, only exact matches can contribute to the similar-
ity of two strings. That might be disadvantageous, for example in the area
of text classification: On the world level, synonyms should be considered as
similar, and for the syllable or standard subsequences string kernel syllables
that change characters because of irregular declination or pluralization forms
like the change from f to v for some plural forms in English (for example
in half, halves) should be possible to match. Finally, a kernel realizing soft
matches becomes more resistent to noise caused by misspellings. Concern-
ing bio-sequences data e.g. for protein classification, soft matches could be
useful to detect common ancestors by neglecting certain amino acids that
were replaced during evolution.
An extension of the string subsequence kernels that makes use of a similar-
ity matrix in the implicit feature space could take such soft matches into
account. The similarity function d(u, v) is hereby given by the entry Auv

of a matrix A that defines the grade of similarity between two k-length fea-
tures u, v ∈ Σk. Setting Auv = 1 if u = v and Auv = 0 otherwise, would
recover the original string kernels, on the other hand, the value Auv can be
interpreted as the probability that v can be replaced by the feature u. To
avoid a feature space expansion to gain the matrix A ∈ R|Σ|k×|Σ|k+ -namely
to define a similarity value for each feature combination uv- the similarity
on subsequence level might be expressed as a product on the symbol level:
Au,v =

∏k
n=1 aunvn . Hereby, aunvn could depict the probability that the

element vn ∈ v is replaced by un ∈ u15. In any case, the matrix A = [Auv]
has to be positive definite, so that equation 10 expresses a valid kernel16.
To put the soft matching kernel in the above equation scheme, the function
d(u, v) that recovers the identity in the original SSK has to be replaced by
the similarity score Au,v:

Ksoft(s, t) =
∑

u,v∈Σk

∑

u=s[i]

λl(i)
∑

v=t[j]

λl(j) Auv

with:
d(u, v) = Au,v

ws(u) =
∑

u=s[i] λ
l(i)

wt(v) =
∑

v=t[j] λ
l(j)

(10)

15This definition for the matrix A seems to be reasonable especially for protein classifi-
cation tasks, where substitution matrices, defining which amino acid has been substituted
by another one, already exist (e.g. PAM [22]). For text classification the definition
Auv =

∏k
n=1 aunvn should be preferred for kernels on word or syllable level since it is

rather difficult to decide which character from our alphabet is often replaced by another
one without changing the word meaning.

16Remember that according to the general definition 9 K(s, t) defines a valid kernel, if
d(u, v) is a kernel.

37

10.2.4 Mismatch String Kernel

The mismatch kernel [17] is very similar to the above presented string kernel
with soft matches. Like the soft matching kernel, it can detect the similarity
of different word forms with a common stem and take misspellings into
account. The mismatch kernel operates on character level. In contrast
to the soft matching kernel, it considers contiguous subsequences of a fixed
length k and allows only up to m mismatches per feature. Like the spectrum
kernel, the mismatch kernel evaluates the similarity of two documents by
counting common subsequences of a fixed length k, but it allows in a graded
version also similar subsequences that contain up to m mismatches. There
are various ways to weight the similarity of subsequences with up to m
mismatches. Leslie et al. use a substitution matrix of probabilities to define
P (u′n|un) denoting the probability that the symbol un is replaced by the
symbol u′n (n ∈ {1, .., k}). The probability that a whole feature u is replaced
by u′ is calculated by the product P (u′|u) = P (u′1|u1)P (u′2|u2)...P (u′k|uk).
Again, as for the soft matching kernel, a substitution matrix seems to be
more reasonable for biological data, where substitution matrixes sometimes
already exist (e.g. PAM [22]), than for linguistic data.
We can formulate this kernel according to definition 9 via two possibilities:
The first one resembles the calculation of the SSK: Again, the sum over all
k-length subsequences is built and d(u, v) denotes the identity. All infor-
mation about the occurrences of substrings in the document, the degree to
which these subsequences differ from the feature that is looked for and the
weighting of the mismatches according to their probability of being replaced
by another element is contained in the weights ws(u) and wt(v). To put it in
the above scheme, we will have to define m-similar subsequences: If a string
u′ differs from another string u by at most m characters it is m-similar to u
denoted by u′ m∼ u. Let ns(u′) and nt(v′) denote the number of occurrences
of the substrings u′ and v′ in s respectively t. We can then define the kernel
according to definition 9:

Kmis(s, t) =
∑

u,v∈Σk

∑

u′m∼u

ns(u′)P (u′|u)
∑

v′m∼v

nt(v′)P (v′|v) δu,v

with P (u′|u) = P (u′1|u1)P (u′2|u2)...P (u′k|uk)
setting: ws(u) =

∑
u′m∼u

ns(u′)P (u′|u)
wt(v) =

∑
v′m∼v

nt(v′)P (v′|v)
d(u, v) = δu,v

A second possibility, which reduces the online-calculation costs, can be
achieved by transforming the above equation. This transformation provides
a different semantics of the function d(u, v) that no longer denotes the iden-
tity of two substrings but the probability that substrings are modifications
of a common original string which they have replaced.

38

Kmis(s, t)

=
∑

u,v∈Σk

ws(u)︷ ︸︸ ︷∑

u′m∼u

ns(u′)P (u′|u)

wt(v)︷ ︸︸ ︷∑

v′m∼v

nt(v′)P (v′|v)

du,v︷︸︸︷
δu,v =: (∗)

With regrouping the sums we get a sum over all subsequences u′, v′ similar
to the features u, v

(∗) =
∑

u′,v′∈Σk

∑

u,v∈Σk

χ
u′m∼u
v′m∼v

ns(u′)nt(v′)P (u′|u)P (v′|v) δu,v

whereby:

χ
u′m∼u
v′m∼v

=
{

1 if u′ m∼ u and v′ m∼ v
0 else

Since δu,v is the identity function we can replace v with u and then eliminate
δu,v:

(∗) =
∑

u′,v′∈Σk

∑

u∈Σk

(
χ

u′m∼u
v′m∼u

P (u′|u)ns(u′)nt(v′)P (v′|u)

)

Since ns(u′) and nt(v′) are independent of u we can extract these terms out
of the sum over the features u. Hereby, we get a new representation of the
mismatch kernel where d(u′, v′) holds all information about the similarity
of the features u′, and v′ and the weights ws(u′) and wt(v′) just count the
occurrences of u′ and v′ in s respectively t:

(∗) =
∑

u′,v′∈Σk

ns(u′)︸ ︷︷ ︸
ws(u′)

nt(v′)︸ ︷︷ ︸
wt(v′)

∑

u∈Σk

χ
u′m∼u
v′m∼u

P (u′|u)P (v′|u)

︸ ︷︷ ︸
d(u′,v′)

Note that P (u′|u)P (v′|u) is similar to the matrix element Auv in the soft
matching kernel, except that here the similarity is not computed directly
but via the feature u. In this case ws(u′) and wt(v′) simply determine the
occurrences of the string in the document. d(u, v) is not the simple identity
like before but all information about the specific aspects of the mismatch
kernel is contained in the function d(u′, v′), which is obviously still a kernel.
This approach offers the possibility to calculate all values of d(u′, v′) before-
hand. The resulting matrix stores the probabilities that a certain feature is
replaced by two similar sequences of at most m differing characters. In the
case of protein classification, for example, it could denote the probability
that two proteins have evolved from an original protein. Thus, d(u′, v′) can
be defined according to some pre-known semantic similarity or equivalent
functionality of the data structure. To calculate a specific kernel, simply the
exact matches of all k-length subsequences of the input string have to be
counted, while the similarity of each particular sequence to the feature that
is examined can be determined via a look-up table.

39

10.2.5 Tree Kernels

In some application areas the data is represented in form of trees instead of
strings, e.g. as parse trees in natural language processing tasks. It is well
known that all trees with d nodes can be rewritten as strings by getting a
unifying tree representation e.g. a prefix representation. Thus, every tree
kernel can be reformulated to a string kernel. S.V.N. Vishwanathan and A.
Smola propose tree kernels based on this transformation in [30]. However, if
inner subtree structures, apart from the leaf nodes, are of interest, it is often
still necessary to maintain the tree structure, which prohibits the application
of string kernels.

10.3 A Possible Taxonomy for Sequence Kernels

Having presented different approaches of string kernels, we would like to
present a taxonomy for string kernels that specifies the context in which a
certain kernel should be used as well as the advantages and disadvantages of
each kernel approach. We propose four evaluation criteria that characterize
a kernel:

Efficiency Depending on the fact whether a string kernel computation is
based on dynamic programming techniques or the use of suffix tree represen-
tations the computational efficiency can vary. Suffix tree based approaches
have linear costs in the length of the sequences which are to be classified
while methods based on dynamic programming techniques can be a bit less
efficient with quadratic time complexity. Among the kernels presented in
this section, only the spectrum kernel is computed via suffix trees. The
mismatch kernel makes use of a variation of a suffix tree but still requires
O(kn2) time complexity. Thus, apart from the spectrum kernel, all kernels
are computed with quadratic time complexity. Still, since the time com-
plexity depends on the length of the input sequence n, the kind of sequences
considered can influence efficiency: A data sequence that is examined char-
acter by character is much longer than the same sequence, if it is treated
as a sequence of words. Therefore, we have specified in table 1 for the effi-
ciency criterium what kind of elementary symbol the considered sequences
contain. In table 1 the length of the considered substructures k is treated
as a constant and therefore omitted in the efficiency measure.

Tolerance towards Noise The robustness of the presented kernel meth-
ods against noise varies with the degree soft matches or mismatches are
allowed in the string kernels. Here, soft matches and mismatches denote
the same, namely that two subsequences are considered as matching, even
if single elements of the subsequences differ.

40

A second possibility to increase the tolerance towards noise offer those ker-
nels that consider noncontiguous subsequences. The requirement of exact
matches is here weakened by allowing the match of sequences that contain
additional elements which are irrelevant for the match.
Beside the question of exact or soft matches and contiguity, the length and
complexity of the features considered for kernel computation can influence
the tolerance towards noise: For instance, a kernel that can match only
three-word-features may be more intolerant towards noise than a string ker-
nel matching all equal features with a length of three characters. On sentence
level, the former one will get a high kernel score only for sentences that are
nearly identical, while the latter can match a lot of subsequences, even if the
sentences which have to be compared differ greatly. Since this aspect may be
considered as a rather implicit influence on noise robustness we will restrict
the measurement of noise tolerance to the two above mentioned aspects of
different degrees of freedom the kernels allow for feature matches.

Adaptivity It can be favorable to adapt a kernel for a specific application
area, so that prior knowledge or characteristics of the data can influence the
kernel calculation. The ability to incorporate prior knowledge into a kernel
can offer an important decision criterion on which kernel is to be preferred.
Presently, there exist two ways to incorporate prior knowledge into the con-
sidered kernels for discrete structures:
Firstly, with the introduction of different decay factors into the string subse-
quence kernels each element of a subsequence can be weighted according to
some prior knowledge. (Remember, for example, that words in the word ker-
nel can be assigned different decay factors according to their part-of-speech.
Due to our prior knowledge we assume that certain parts-of-speech like nouns
are more important for text classification than others, e.g. prepositions, and
therefore, they should have a higher influence on the kernel outcome.)
Secondly, the approaches allowing soft matches provide a possibility to in-
fluence the kernel properties by the use of prior knowledge. All these ap-
proaches assume that there exists some form of measurement how similar
two differing elements of a soft match are. (Compare the similarity matrix
A in the soft matching kernel or P (u′|u), the probability that a feature u
was replaced by u’ as used in the mismatch kernel.) If we have some knowl-
edge at our disposal when features or elements of features are to be con-
sidered similar despite looking different, we can incorporate this knowledge
in the above mentioned similarity measurements. A prototypical situation
where the consideration of prior knowledge could significantly improve the
classification by kernel based methods is a protein classification task where
evolutionary tendencies are already known and, if incorporated in the clas-
sification task, can help to identify similar proteins that evolved from a
common ancestor. PAM [22] and BLOSUM [9] matrices are for example,

41

empirically-derived substitution matrices for proteins that can provide the
necessary prior knowledge.

Applications The two main application areas for string kernels presented
in the literature are text classification and classification of biological data,
namely protein classification. Therefore, these are the application areas
along which we would like to distinguish the strengths and weaknesses of
each string kernel approach. Since the SSK with individual decay factors
can be built from a standard SSK, as well as a syllable or word kernel, its
possibilities for applications depend on these underlying kernels.

For convenience, we add a table which characterizes all kernels introduced
above with respect to the four criteria presented here.

Table 1: Characteristics of the presented kernels. Since the length k of
considered subsequences in the string kernels can be handled as a constant,
it is neglected here for the efficiency measure. The computation efficiency
depends therefore only on the length of the sequences n over the respective
alphabet Σ.

Efficiency Tolerance
of Noise

Adaptivity Application

Standard SSK O(n2)
(n: length of
character se-
quence)

moderate:
noncontiguous
subsequences,
exact
matches

no adaptivity suitable for
biological
and linguistic
data

Syllable Kernel O(n2)
(n: length
of syllable
sequence)

moderate:
noncontiguous
subsequences,
exact
matches

no adaptivity only suitable
for linguistic
data

Word Kernel O(n2)
(n: length
of word
sequence)

moderate:
noncontiguous
subsequences,
exact
matches

no adaptivity only suitable
for text clas-
sification

42

Efficiency Tolerance
of Noise

Adaptivity Application

SSK with DDF O(n2)
(n: option-
ally charac-
ter, syllable
or word se-
quence)

moderate:
noncontiguous
subsequences,
exact
matches

adaptivity
through sym-
bol
dependent
decay factors

depends on
the SSK it is
build of

SSK with DDFGS O(n2)
(n: option-
ally charac-
ter, syllable
or word se-
quence)

moderate:
noncontiguous
subsequences,
exact
matches

adaptivity
through sym-
bol
dependent
decay factors

depends on
the SSK it is
build of

Soft Kernel O(n2)
(n: option-
ally charac-
ter, syllable
or word se-
quence)

high:
noncontiguous
subsequences,
soft matches

adaptivity
through simi-
larity matrix
A defining
weights for
soft matches

with
standard SSK
this kernel
is suitable
for linguistic
as well as
biological
data

Spectrum Kernel O(n)
(n: length
of character
sequence)

low:
contiguous
subsequences,
exact
matches

no adaptivity suitable for
biological
and linguistic
data

Mismatch Kernel O(n2)
(n: length
of character
sequence)

moderate:
contiguous
subsequences,
soft matches

adaptivity
through
definition of
weights for
mismatches,
e.g. by a
substitution
matrix

preferably
suitable for
biological
data

43

11 Conclusions and Future Research

Discrete structures like strings cause a main problem for learning tasks like
categorization, clustering, ranking etc., because common efficient learning
algorithms require document representation in a vector space. Kernel meth-
ods solve this problem since they allow the use of efficient learning algorithms
like the Support Vector Machine for structures that lack such a vector repre-
sentation. Therefore, finding appropriate and efficient kernel methods that
handle data structures, like strings and trees, have recently been of great
interest in the machine learning sector. The need of categorization of bio-
logical sequences, e.g. for protein classification, emphasizes the practical
importance of kernel based learning methods for structures in the field of
Bioinformatics. Text classification problems yield another urgent example
of an application area for sequence kernels as well. Due to this fact, we
have focussed in this work on categorization of texts and biological data
sequences with the help of sequence kernels.
There exist several other kernel approaches for sequences, the most common
one being the bag-of-words kernel and the Fisher kernel. Sequence kernels
represent one of the first competitive alternatives to those approaches, be-
cause they are widely suitable for linguistic as well as biological data, com-
putationally efficient and they do not require any generative model, like the
Fisher kernels introduced by Jaakkola et al. [12],[13].
Numerous different approaches for sequence kernels have been presented
in the literature varying in several aspects like computational efficiency or
performance issues. It is therefore important to gain a unifying overview
of these kernels that emphasizes the differing possibilities the various ap-
proaches offer. With this work we have examined two basic approaches,
the spectrum and the string subsequence kernel in detail. We have then
provided an overview of the existing approaches, and, for better compari-
son, we have introduced a unifying representation for sequence kernels. We
have developed a taxonomy that brings out the crucial evaluation criteria
for sequence kernels. This should yield a good starting point for further
investigations:
Most of the presented kernels still have relatively high computational costs.
The use of suffix trees for kernel computation can reduce time complexity
to linear costs in the input sequence length. At present, among the pre-
sented approaches, only the spectrum kernel can make use of this efficient
algorithm. Hence, it seems promising to examine whether any possibilities
exist to extend the use of suffix trees for kernels allowing soft matches.
Up to now, the sequence kernels were in principle developed for the use of
documents in string representation. It should be further investigated if it is
possible to extend the use of such kernels to other discrete structures like
trees, finite state automata and other dynamical systems.
A main advantage of sequence kernels over e.g. Fisher kernels is that these

44

kernels are able to capture semantic information about the data without
any prior knowledge. Nevertheless, it can be beneficial to incorporate prior
knowledge if available. Several approaches implementing soft matches or
different decay factors offer mechanisms to adapt kernels according to prior
knowledge about the application area. However, except the mismatch kernel
they lack experimental investigations. Concrete definitions of similarity ma-
trices for soft matches and symbol dependent decay factors to adapt kernels
with the help of prior knowledge should be tested. For text categorization,
clever implementations of soft matches may even allow multilingual docu-
ment processing.
Furthermore, it may improve performance to combine different kernel meth-
ods. The combination of kernels were examined by Lodhi et al. [18] in an
initial attempt, but never systematically, across different approaches.
Having shown that classification with the help of sequence kernels yield an
alternative for state-of-the-art classification methods, it remains to further
investigate and improve these kernels, define optimal parameter adjustments
and eventually find out under which circumstances the sequence kernels can
outperform existing approaches.

45

12 Acknowledgements

I would like to express my thanks to my supervisor Barbara Hammer for
helpful advice and motivation. She has always supported this work with
great interest and enthusiasm. Furthermore, I thank Volker Sperschneider
for assessing this work and I would like to thank all who have provided useful
statements and discussion, notably Aida Senkpiel and Sebastian Blohm.

46

13 References

References

[1] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W.
Miller, and D.J. Lipman. Gapped BLAST and PSI-BLAST: A new gen-
eration of protein database search programs. Nucleic Acids Research,
25:3389-3402, 1997.

[2] C.J.C. Burges. A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2(2).121-157, 1998.

[3] N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-
Sequence Kernels. Journal of Machine Learning Research 3(Feb):1059-
1082, 2003.

[4] M. Collins and N. Duffy. Convolution kernels for natural language. Neu-
ral Information Processing Systems NIPS 14, 2001.

[5] N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector
Machines. Cambridge, 2000.

[6] R. Fletcher. Practical methods of Optimization John Wileyand Sons,
Inc., 2nd edition, 1987.

[7] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner:
A unifying view of linear-time suffix tree construction. Algorithmica,
19(3): pp. 331-353, 1997.

[8] D. Haussler. Convolution kernels on discrete structures. Technical Re-
port UCSC-CRL-99-10, University of California, Santa Cruz, July 1999.

[9] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from
protein blocks. PNAS, 89:10915-10919, 1992.

[10] S. Henikoff and J.G. Henikoff. Embedding strategies for effective use
of information from multiple sequence alignments. Protein Science,
6(3):698-705, 1997.

[11] T. Hubbard, A. Murzin, S. Brenner, and C. Chothia. Scop: a structural
classification of proteins database. Nucleic Acids Research, 25: 236-239,
1997.

[12] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework
for detecting remote protein homologies. Journal of Computational Bi-
ology, 2000.

47

[13] T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel
method to detect remote protein homologies. ISMB, pp.149-158. AAAI
Press, 1999.

[14] T. Joachims. Text categorization with support vector machines: Learn-
ing with many relevant features. In Claire Nédellec and Cline Rouveirol,
editors, Proceedings of the European Conference on Machine Learning,
pp. 137-142, Berlin, 1998, Springer.

[15] K. Karplus, C. Barrett, and R.Hughey. Hidden Markov Models for
Detecting Remote Protein Homologies. Bioinformatics, 14(10):846-856,
1998.

[16] C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Bio-
computing, pp. 564-575, 2002.

[17] C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels
for SVM protein classification. Neural Information Processing Systems
15, 2002.

[18] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins.
Text classification using string kernels. Journal of Machine Learning
Research, 2002.

[19] G. Salton, A. Wong, and C.Yang. A vector space model for automatic
indexing. Communications at the ACM, 18(11):613-620, 1975.

[20] S.L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recom-
mended approach. Data Mining and Knowledge Discovery, 1:3, 317-327,
1997.

[21] C. Saunders, H. Tschach, and J.Shawe-Taylor. Syllables and other
String Kernel Extensions. Proceedings of the Nineteenth International
Conference on Machine Learning (ICML ’02), 2002.

[22] R.M. Schwartz and M.O. Dayhoff. Atlas of Protein Sequence and Struc-
ture, chapter: Matrices for detecting distant relationships, pp.353-358.
National Biomedical Research Foundation, Silver Spring, MD, 1978.

[23] A. Smola and B. Schölkopf. A tutorial on support vector regression.
NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College,
University of London, UK, 1998.

[24] S. Sonnenburg, G. Rätsch, A. Jagota, and K.-R. Müller. New methods
for splice site recognition. Proceedings of the International Conference
on Artificial Neural Networks, 2002.

48

[25] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-
260, 1995.

[26] V. Vapnik. Estimation of Dependences Based on Empirical Data [in
Russian]. Nauka, Miscow, 1979. (English translation: Springer Verlag,
New York, 1982).

[27] V. Vapnik. The Nature of Statistical Learning Theory, Springer Verlag,
New York, 1995.

[28] V. Vapnik. Statistical Learning Theory, John Wiley and Sons, Inc., New
York, 1998.

[29] J.-P. Vert. Support vector machine prediction of signal peptide cleavage
site using a new class of kernels for strings. Proceedings of the Pacific
Symposium on Biocomputing 2002, pp. 649-660. World Scientific, 2002.

[30] S.V.N. Vishwanathan and A.Smola. Fast kernels for string and tree
matching. Neural Information Processing Systems 15, 2002.

[31] C. Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-
11, Royal Holloway, University of London, January 1999.

[32] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R.
Müller. Engineering Support Vector Machine Kernels That Recognize
Translation Initiation Sites. Bioinformatics, 16(9):799-807 (2000).

49

