
Christian Kaul, Johannes Knabe, Tobias Lang, Volker
Sperschneider

Filtering Spam E-mail with Support Vector Machines

PICS

Publications of the Institute of Cognitive Science

Volume 8-2004

ISSN: 1610-5389

Series title: PICS
 Publications of the Institute of Cognitive Science

Volume: 8-2004

Place of publication: Osnabrück, Germany

Date: September 2004

Editors: Kai-Uwe Kühnberger
 Peter König
 Petra Ludewig

Cover design: Thorsten Hinrichs

© Institute of Cognitive Science

Filtering Spam E-mail
with Support Vector Machines

Christian Kaul, Johannes Knabe, Tobias Lang and Volker Sperschneider

Institute of Cognitive Science, University of Osnabrück
chrisskaul@web.de, jknabe@uni-osnabrueck.de,

tlang@uni-osnabrueck.de, sper@informatik.uni-osnabrueck.de

Abstract
It is investigated in how far support vector machines are suitable for
filtering spam e-mail. Support vector machines have several advantages
in comparison to other machine learning approaches and have been
proven to be an efficient tool for classification of linguistically
preprocessed text. A software program has been developed that learns
the individual classification criteria of its user and filters e-mail
accordingly. The complete process is fully autonomous, based solely on
sample e-mails. In an evaluation the program is compared to
conventional approaches showing advantages in reliability and
maintenance.

Introduction

The problem of text categorization arises in many different areas such as preprocessing news
agency stories and data mining. Nowadays, a prominent task is to classify incoming e-mails. An
e-mail user wants his or her e-mail
to be sorted to different folders
according to their contents, filtering
out undesired spam e-mail.

Text categorization is one of
the major application areas of
support vector machines (SVM). In
an often cited experiment, Joachims
(1998) achieved better results with
an SVM algorithm than with
standard methods in the
classification of labelled Reuter’s
news stories that were to sort into
categories such as money market,
earning etc.

In our study, we investigate
the rapidly growing problem of
spam e-mail. A classifier makes the binary decision whether an incoming e-mail is handled as

An SVM constructs a hyperplane in the feature space and

thereby separates spam from desired e-mail.

 1

mailto:chrisskaul@web.de
mailto:tlang@uos.de

spam or as desired e-mail. Though many different approaches to this problem exist, most of them
are using explicit rules that need to be specified by the program or by the user (there are,
however, also approaches that use self-learning probabilistic methods such as Bayesian Nets).
Our goal was to develop a powerful spam-filter that learns fully autonomously from individual
examples provided by the user, i.e. it learns to imitate its user’s classification strategy.
Techniques from neuroinformatics such as neuronal networks fulfill these criteria. In particular,
SVMs are well suited for this task, as they have outstandingly good generalization performances
and are based on sound mathematical grounds which makes it straightforward to use them.

In the following, we will give a short introduction into the theory of SVMs for the non-
familiar reader. Section two will discuss different possibilities how to preprocess text data to be
used by support vector techniques. In a third section, the architecture of our program is described
as it was presented at CeBIT 2004. Section four discusses and evaluates its advantages and
disadvantages. Finally, we assess the performance of our program and give an outlook of how it
could be further improved.

Theory of Support Vector Machines1

Binary classification is one of the most important tasks that can be treated using neural networks.
Input vectors are to be classified into two classes. This is exactly the situation when we want to
separate e-mails into spam and non-spam.

Neural networks use a finite training set consisting of vectors x ∈ ℜn of dimension n
together with corresponding class labels d ∈ {+1, -1}. Vectors with class label +1 are called
positive instances; vectors with label –1 are called negative instances. A neural network is
trained to correctly classify such training vectors. We expect appropriate generalization to take
place after training in the sense that the neural network also correctly classifies (most) unseen
instances. Aspects that influence training success and generalization ability are: (i) The network
must be powerful enough to allow for a (approximate) solution of the task under consideration.
This can be achieved by choosing a model with many parameters (neurons, hidden layers,
weights). (ii) The more parameters we have the more expensive is the process of training. An
efficient training algorithm is required to achieve rapid training, particularly in situations where a
network is to be retrained very often (as is the case with the Spam problem). (iii) The network
must be not too powerful in order to prevent overfitting.

Model selection is a severe problem. In the context of feed-forward networks, for
example, pruning algorithms reduce the amount of neurons and weights, feature selection
appropriately designs the input interface of the network, genetic algorithms optimize network
topology. Nevertheless, finding an appropriate feed-forward network for a given learning task
may be a difficult and time-consuming task.

Support vector machines solve all of these problems in an elegant and mathematically
well-founded manner. From an architectural point of view, a SVM looks like a simple
Perceptron, a device consisting solely of n input neurons that receive the coordinates of an input
vector x, and a single output neuron that predicts the class label of x by summing up the
coordinates of x in a weighted manner and firing if this weighted sum exceeds a certain

1 The reader familiar with SVMs may skip this section.

 2

threshold. Having real-valued weights w1, …, wn and threshold –b, the model thus looks as
follows:

x1

xn

w1

Input

 wn

Geometrically expressed, class separation by a Perceptron means that the hyperplane H = { x ∈
ℜn / w, x + b = 0} separates positive from negative instances: Positive instances fall into the
positive halfspace H+ = { x ∈ ℜn / w, x + b > 0}, and negative instances fall into the negative
halfspace H- = { x ∈ ℜn / w, x + b < 0} defined by H. Here, w, x denotes the usual inner
product in n-dimensional real space, that is w, x = wi ⋅ xi

i=1

n

∑ .

negative instances

positive instances

H-

H+

H

Training of a Perceptron usually is done by the Perceptron algorithm that changes the actual
weight vector w into w + x, when seeing a randomly chosen positive instance x that is
incorrectly classified into H-, and into w – x, when seeing a randomly chosen negative instance
that is incorrectly classified into H+. The famous Perceptron Convergence Theorem states that
for a linearly separable training set finally a weight vector is found that indeed separates positive
from negative instances.

Problems with Perceptrons are: Training sets often are not linearly separable. Embedding
them into a larger input space (by defining further features) often makes them linearly separable,

 3

but leads to more weights thus leading to worse generalization and longer training times.
Convergence time of the Perceptron algorithms may be long.
 In Learnability Theory, generalization ability of models can be quantitatively defined. In
the case of the Perceptron it can be shown that generalization depends on the so-called margin of
the hyper-plane H with respect to the training set, that is, on the minimum distance points from
the training set have to H, but it does not depend on the input dimension n. The example below
supports the idea that margin maximization improves generalization. The indicated hyperplane
has a greater margin than the formerly proposed one – and seems to separate positive from
negative examples in a more robust manner:

margin

margin

negative instances

positive instances

H-

H+

H

SVMs compute the separating hyperplane H having maximal margin with respect to the

training set by solving (in an efficient manner) a corresponding standard quadratic optimization
problem that results from a Lagrangian formulation of the problem and transformation into its
dual problem (technical details are omitted).

Generalization ability is guaranteed by theorems from statistical learnability theory like
the following:

Let labelled data (x,d) be drawn according to a fixed, by unknown distribution
P(x,d) with the constraint that only vectors x ∈ ℜn of norm less than a fixed value
R are drawn. Define for each hyperplane H the generalization error ErrP(H) with
respect to the distribution H as the probability to draw a labelled vector (x,d) which
is misclassified by hyperplane H. Correspondingly, define for each training set T
consisting of m labelled vectors (x,d) the empirical error Erremp(T,H) as the number
of elements of T that are misclassified by H, divided by m. Finally, the probability
of occurrence of T, P(T), is defined assuming that labelled vectors (x,d) are
independently drawn according to distribution P. Note that Erremp(T,H) can be
simply calculated, given training set and hyperplane H, whereas ErrP(H) cannot be

 4

calculated, unless the distribution P is known (and simple enough). Nevertheless,
ErrP(H) is the number we are interested in.
 Now the following holds true: Given a number δ between 0 and 1 (called
confidence), with probability greater that 1 - δ any training set T of m labelled
vectors drawn independently according to P has the property that any hyperplane H
with margin at least µ with respect to T has generalization error at most

2
m
⋅ (64 ⋅ R2

µ2 ⋅ log e ⋅ m ⋅ µ
8 ⋅ R2 ⋅ log 32 ⋅ m

µ2 + log 4
δ

)

Ignoring mathematical details of the approach and the formula, the essential message is that
quality of generalization scales with R2/µ2 and 1/m (m = Number of training examples). The
additional term log(4/δ) simply expresses that the more confident we want to be the more liberal
we must be with the expected generalization error. So, the greater the margin is, the better
generalization is. The appearance of radius R in R2/µ2 is easily explained: Scaling up vectors by
a constant factor c would increase margin also by a factor of c, but obviously would not affect
generalization error. So, the quotient R/µ can be the only meaningful measure for generalization
quality.

A second message of the formula is that input dimension n has no influence on
generalization ability. This means that we must not worry too much about the amount of input
features. In particular, having a not linearly separable task, it offers the opportunity to embed
input space into an enlarged feature space without loss in generalization ability thus increasing
the chance to obtain a linearly separable task. As a simple example, consider the non-separable
XOR-problem in 2-dimensional space. Positive instances (0,1) and (1,0) cannot be linearly
separated from negative instances (0,0) and (1,1).

Now add the additional feature that is simple the product (logical AND) of the first two
coordinates to obtain positive instances (0,1,0) and (1,0,0), and negative instances (0,0,0) and
(1,1,1). The problem becomes linearly separable.

 5

Embedding input space ℜn by a function Φ into some feature space ℜN with N that usually is
much greater that n (even Hilbert spaces H of infinite dimension are allowed as feature spaces)
improves separability without causing problems with respect to generalization ability.
Nevertheless, another problem comes up: Finding hyperplanes with maximal margin involves an
extensive amount of computations of inner products. Obviously, it makes a difference whether
this has to be done in input space of low dimension n or in feature space of high dimension N.
One final trick also solves this problem: Embeddings Φ: ℜn → ℜN that are used in practise
usually have the property that the inner product <Φ(x),Φ(y)> between two feature vectors can be
calculated from the inner product <x,y> between the input vectors and then applying a simply
calculable kernel function K: <Φ(x),Φ(y)> = K(<x,y>).
 Consider an embedding that generalizes the one used above by calculating all products
of 0, 1 or 2 input coordinates, that is, all monomials up to degree 2:

Φ(x1, x2) = (1, x1, x2, x1x1, x1x2, x2x1, x2x2).

We calculate:

 <Φ(x1, x2),Φ(y1, y2)>

= <(1, x1, x2, x1x1, x1x2, x2x1, x2x2), (1, y1, y2, y1y1, y1y2, y2y1, y2y2)>
 = 1 + x1y1 + x2y2 + x1x1y1y1 + 2x1x2y1y2 + x2x2y2y2

= (1 + x1y1 + x2y2)2
= (1 + <(x1, x2), (y1, y2)>)2
= K(<(x1, x2), (y1, y2)>)

The used Kernel function K(p) = (1 + p)2 is an instance of so-called polynomial kernels. Other
kernels are the Gaussian Kernels

Kσ (x, y) = e
−

x−y 2

2⋅σ 2

leading to the well-known Radial-Basis-Function networks, or tangens hyperbolicus

KΘ,T (x, y) = tanh(xT y −Θ
T

)

leading to the standard feedforward networks (under suitable choice of the parameters Θ and T).
The choice of an appropriate kernel function is essential. Here is the place where specific

domain knowledge about the problem under consideration may be integrated into the
architecture of a SVM. There are rather elaborate kernel functions that are well suited for the
problem of text categorization – though our experience with the Spam problem was that the
simpler standard kernels (as e.g. polynomial kernels) are already sufficient to successfully attack
the problem.

Summarizing, SVMs are attractive since (i) they are grounded on a clear mathematical
foundation that explains and guarantees generalization ability (ii) rapid training is possible based
on standard techniques of quadratic optimization and the choice of suitable kernel functions (iii)
any feature that appears to be relevant to the problem can be freely used without compromising
generalization ability. This made the model attractive for the Spam problem especially due to the
fact that a rather simple linguistic preprocessing could be chosen without running into danger of
overfitting.

 6

Linguistic Preprocessing

When using SVMs, one basic consideration is the transformation from text documents to
mathematical representations. Most prominent is the bag-of-words approach, also called vector
space model. In this approach, documents are transformed to vectors whose entries represent the
presence of key words in the document. This requires that beforehand a dictionary of key words
is chosen from which it is possible to categorize a document. The choice of this dictionary is an
essential task since the whole classification will depend upon it.

A document vector, i.e. the mathematical vector representing a text document, may
contain different kinds of information. At first, one has to decide what kind of terms are to be
represented. It is straightforward to use fully inflected words as terms, so that for example “run”
and “running” are handled as two different entries. The more sophisticated choice is to use word
stems as representation units so that closely related words are treated as the same. This requires a
preprocessing with a stemming algorithm.

Vectors may contain Boolean variables that indicate the presence of the corresponding
term in the document. It is also possible to represent the number of occurrences of the
corresponding term in the text. Weighting factors may be added that introduce the information of
the ratio between the total number of documents and the number of documents containing the
specific term so that special attention is given to rare words that are believed to be significant.
Finally, document vectors may be normalized to exclude the influence of document length.

Depending on dictionary size, resulting vectors may be very large. This might lead to
overfitting when using other techniques, however it is a key characteristic of SVMs to achieve
better results proportionally to the amount of given training data. Furthermore, single document
vectors are sparse since they do not contain most of the dictionary words. Therefore, in general it
should be easy to build a separating hyperplane in the corresponding feature space. Likewise,
there are fast techniques for calculating the inner products of sparse vectors. These inner products
form the central algorithmic part of a SVM since they compute the similarity of two elements, i.e.
of two documents in the context of text categorization. Underlying this approach is the
assumption that two documents are similar if they contain the same characteristic words, even if
they occur in a different order. The size of the resulting vectors depends upon the size of the
dictionary. The choice of an appropriate dictionary is the essential preparation step for text
classification by mathematical means. It implicitly contains the domain knowledge by specifying
the characteristic terms that make up the classification decision. A possible way to construct a
dictionary is to ask experts that name all those terms that are important according to their
experience. This corresponds to giving explicit rules. Using such explicit rules is severely
criticized since it is error-prone and does not correspond to the goal of creating autonomous
systems. Systems should learn themselves what characteristics are needed. In the field of text
classification, they shall only be given labeled training examples from which they extract
significant terms. This is a form of supervised machine learning. An easy way to do so is to parse
all words contained in the training examples and to construct a statistics, measuring the numbers
of term occurrences in each category. By comparing the statistics of a given term for the different
categories, one may calculate how meaningful this term is for a certain category in comparison to

 7

other categories. On these grounds, one can construct a dictionary that contains only the most
significant terms. It is reasonable to assume that uninformative words such as “and”, so called
stop-words, are automatically ignored since they should be uniformly distributed over all training
examples and categories.

There are various more sophisticated techniques than the ones described here which may
lead to better classification results. For example, information about word order is lost in a bag-of-
word approach. Much work is currently spent on string kernels that are able to deal with discrete
input such as sets of structures (e.g. strings) as opposed to vector spaces as input. For example,
they are able to deal with subsequences of words and therefore deliver more sophisticated
estimates of the similarity of documents. However, they are not as straight-forward and
computationally efficient as the techniques described above. On the other hand, they can
renounce on preprocessing steps such as computing word stems since they look directly at
subsequences of words.

Architecture of our Program SpamStop

In our implementation, we assume that the user provides two folders containing e-mails classified
as desired e-mails and spam e-mails respectively. These two sets are then parsed into strings,
where one string is a sequence of more than three letters separated from the next by white space.
Shorter sequences, punctuation marks and special characters are simply considered white space.
The resulting strings are then converted to uppercase and put into two lists, a string not yet
present in the corresponding list (desired/spam) is added with an initial counter value of one, and
otherwise the counter of the string is increased by one. Currently neither a semantic nor a
syntactic mapping algorithm, like e.g. stemming, is used. The simplicity of this approach is one of
its major strengths, since we did not want to put our intuitive ideas of tricks which spammers use
to bypass simple word matchers, for example “M.E.D.I.C.I.N.E” instead of “medicine”, into the
program in order to keep it free of hardwired world knowledge which might – at best – get
outdated or – even worse – be misleading. The same holds for semantic mappings, since meaning
of a word might depend on its grammatical form and its context. An additional learning algorithm
or a steadily updated online database could help here in the future.
 Having thus generated lists of most prominent good and bad strings, the lists are then
checked for overlaps. In case there is an identical string found in both lists the higher counter gets
decreased by the value of the lower counter and the latter one is removed from its list. Now from
both lists the 50 strings with the highest counters are selected as future features.
 These features are now used to transfer the mails of the two training sets into their
numerical representation: a 100-dimensional vector of binary values, each position representing
exactly one feature. Every e-mail is parsed as above and for every position of the vector it is
checked whether the corresponding feature occurs at least once in it. If so, the position’s value is
set to one, otherwise it is set to zero.

Now the core training can start: Different pre-defined Kernel functions are tried with k-
fold cross validation, meaning that the training set is divided into k sets and k-1 of them are used
for training while the remaining one is used to test the resulting model’s accuracy in classifying
the e-mails. The model yielding the highest accuracy is used for classification.

 8

 Today there are lots of different e-mail clients competing on the market and running on
different operating systems. We wanted our program to run on the user’s computer, instead of the
server, to reflect the individual classification criteria of users. So we had to be as platform and
client independent as possible. Having made these considerations, we decided to implement
SpamStop in Java for which a runtime environment (virtual machine) exists for almost all
operating systems. Secondly, SpamStop works as a proxy server, i.e. the client does not, as usual,
ask the provider’s mail server for new e-mails but our program which in turn asks the server.
Technically, SpamStop listens to a pre-defined port on the computer where it is installed and the
client is configured to direct requests to this port on that computer. Thus, it would be easily
possible to run it on a remote server as well, provided that either the individually trained model is
present on the server or a common model is used for all users. The latter means of course losing
the advantage of individual classification criteria but might be applicable in environments where
those criteria are homogenous, e.g. in companies. Currently only the widely used Post Office
Protocol, version 3, (POP3) is supported. The richer but rarely used Internet Message Access
Protocol (IMAP) is not implemented yet.
 In case that there are new e-mails to be received, they are transferred from the provider’s
server to SpamStop, classified as described, and then handed over to the users e-mail client. Every
incoming message is converted to its vector representation using the features extracted in the first
part of the training as described above and then fed into the SVM using the individual model
which resulted from the core part of the training. The SVM returns not only whether the e-mail
was on the good or on the bad side of the separating hyperplane in the 100-dimensional “e-mail
space”, i.e. whether it was more similar to the positive or negative training instances. It also
indicates the distance to that hyperplane. Should the e-mail have been on the bad side, i.e.
supposedly is spam, this value is used as certainty measure of the classification. It is mapped on a
procentual probability, where “far away from the hyperplane” means 100 percent – this is spam
for sure – while a small value would yield a lower percentage indicating that the user should have
a look at it. At the moment only a warning and the probability are added to the subject line of the
corresponding e-mail before it is handed over to the e-mail client. Combined with simple rules of
the kind “IF Subject CONTAINS ‘100% Spam’ MOVE_TO Trash”, which most e-mail clients
support, this is already quite convenient.

Discussion and Program Evaluation

 In comparison to other approaches to the classification of e-mail, our program SpamStop
has several advantages, making it well suited to the user’s desires.

Unlike in most other Spam categorization solutions, classification criteria are learned
from the user’s individual training examples. When these criteria are either handcrafted by
experts or learned from e-mails which a (maybe hair-breadth) majority considers spam there is
not much of the user’s personal attitude left. This becomes crucial in the context of annoyances
like stalking where the user receives personalized mail of similar content from varying addresses.
Furthermore, one has to account for the possibility that a user wants to receive messages that the
majority rejects, such as loan offers.

This example leads to a second advantage of SpamStop, its flexibility in the adaptation to
new kinds of spam e-mail. Since only training examples influence the classification model, new

 9

kinds of spam e-mail are likely not to be detected by the system. This appears to be a handicap for
SpamStop, but is in fact one of its advantages. While other, rule-based, systems have to costly
develop new rules to account for the new spam types, SpamStop needs only to be retrained on an
extended example set which contains besides the old examples instances of the new spam type.
SpamStop will automatically develop new filter criteria adapted to the new situation.

SpamStop is not only based on spam e-mail a user gets, but also makes use of desired e-
mail considering them as positive instances. The characteristics of desired e-mail give thereby a
second indication system which enhances the classification abilities of the system for difficult and
unclear e-mail since it allows for a third classification category: while there were only
“guaranteed spam” and “unclear, resp. unlikely to be spam” before, it is now possible to assess an
e-mail as “guaranteed desired”. Therefore, classification becomes more precise and
unambiguously. For the remaining unclear cases, estimation is used as described above.
 Although briefly mentioned before, we shall state another advantage of SpamStop: its
total independence of handcrafted rules. This feature gets extremely important considering the
development of spam e-mails. Spammers have long started to adapt to common rules and to
undergo them. Therefore rule based systems will always have the problem of an outdated rule
basis. To perform the necessary update is both costly and inconvenient. As described, our
program presents a better approach to this problem as the updating process is limited to the pure
statement of what is a new Spam. In fact, only a constant permutation of every spam e-mail could
undergo this. But even then, probably not every word of every new e-mail could be changed
while persevering the sense, thus leaving the chance for SpamStop to focus on and learn the
context surrounding the key word in all variations (e.g. sex, S_E_X, intercourse,…). Other
approaches focus on terms either in a boolean way (IF term IN_EMAIL THEN Spam) or add up
points (IF term IN_MAIL THEN spam_value+=3) and consider it Spam if the sum exceeds a
threshold. Since the SVM looks at the position of the vector representing the whole e-mail in
relation to the hyperplane, co-occurences of words do matter. That is, the combination of
“money”, “interest” and “rate” might lead to a 100 percent Spam classification while one of the
words alone could be neutral or even a positive indicator.

Performance and Outlook

Although no official benchmark was conducted to assess the performance of our program
SpamStop, we are able to evaluate it on the basis of our own tests and controlled versions running
for several moths on different desktop computers.

Firstly, in order to work properly, SpamStop needs to be trained with enough data.
Although, as discussed above, the general rule for Support Vector Machines states “the more
data, the better the results”, a critical number of training instances being sufficient to start with
was empirically determined. Over all different training sets and all test runs, two hundred e-mails,
about one hundred of each category, is enough in order for SpamStop to work to a satisfying
degree. It is true however, that performance gets better with more training instances.

In its current version, SpamStop has a correctness performance of 90% to 95%, i.e. it
reaches the same percentages as the leading products on the market. There are rarely false
positive classifications. The remaining 10% to 5% are mainly very ambiguous e-mail like
electronic greeting cards, which often include advertisements in the very same e-mail.

 10

When trying to evaluate these numbers, one has to bear in mind that SpamStop does not
yet include a variety of standard pre-filtering mechanisms, which should be included in a possible
end-user product. This has not yet been done since it was the main goal of this study to assess the
possibility of using a single SVM for filtering spam e-mail. So long, each incoming e-mail is
examined in the same way. If standard pre-filtering methods were applied, clearly positive and
negative e-mails would be removed beforehand, thus allowing SpamStop to focus on the grey
area in-between. Since they are not incorporated, out of the variety of mechanisms, only some
shall be briefly mentioned here.

It is popular to preprocess e-mail accordingly to its sender’s address. Lists are maintained
which name spam-senders on the one hand (“black list”) and known persons on the other (“white
list”). If the sender’s address of an incoming mail is in either of the two lists, that e-mail is not
further considered, but directly sorted into the corresponding category instead. The program
architecture of SpamStop would even allow improving this technique further, using addresses in
the training sets. With this trick, it could be possible to capture ambiguous cases as the mentioned
example of the electronic greeting cards, given that there is at least one instance among the
positive instances.

Another recent method to filter out a lot of undesired e-mails is to ask the server from
which the corresponding e-mail apparently originated whether the sender’s address really exists
there.

Since SpamStop is up to now only a client based system, another aspect of how SpamStop
could be improved, is to further develop it to incorporate it into networks. This could be easily
fulfilled with a paradigm of local training and global filtering. The model used for the
classification, could be applied to e-mail directly on the server. This would prevent a lot of
unnecessary traffic caused by spam e-mails and would therefore be a valuable tool against the
spam flood that is expected during the next years.

References

Carl, C. (2003). Kernels for Structures. Bachelor Thesis. University of Osnabrück
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines.

Cambridge University Press.
Hird, S. (2002). Technical Solutions for Controlling Spam. In Proceedings of AUG2002,

Melbourne, 4-6 September, 2002.
Madigan, D. (2003). Statistics and the War on Spam. Online at

http://www.stat.rutgers.edu/~madigan/PAPERS/sagtu.pdf (04-07-21)
T. Joachims (1998). Text categorization with support vector machines: Learning with many

relevant features. In Claire Nédellec and Cline Rouveirol, editors, Proceedings of the
European Conference on Machine Learning, pp. 137-142, Berlin, Springer.

SpamStop – Intelligent Neural Networks against Spam. Software available at
http://www.spamstop.panmental.de

 11

	spamstop_Studienprojekt.pdf
	Introduction
	Performance and Outlook

