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Abstract 
It is investigated in how far support vector machines are suitable for 
filtering spam e-mail. Support vector machines have several advantages 
in comparison to other machine learning approaches and have been 
proven to be an efficient tool for classification of linguistically 
preprocessed text. A software program has been developed that learns 
the individual classification criteria of its user and filters e-mail 
accordingly. The complete process is fully autonomous, based solely on 
sample e-mails. In an evaluation the program is compared to 
conventional approaches showing advantages in reliability and 
maintenance. 

 
 
Introduction 
 
The problem of text categorization arises in many different areas such as preprocessing news 
agency stories and data mining. Nowadays, a prominent task is to classify incoming e-mails. An 
e-mail user wants his or her e-mail 
to be sorted to different folders 
according to their contents, filtering 
out undesired spam e-mail. 

Text categorization is one of 
the major application areas of 
support vector machines (SVM). In 
an often cited experiment, Joachims 
(1998) achieved better results with 
an SVM algorithm than with 
standard methods in the 
classification of labelled Reuter’s 
news stories that were to sort into 
categories such as money market, 
earning etc. 

In our study, we investigate 
the rapidly growing problem of 
spam e-mail. A classifier makes the binary decision whether an incoming e-mail is handled as 

 
An SVM constructs a hyperplane in the feature space and 

thereby separates spam from desired e-mail. 
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spam or as desired e-mail. Though many different approaches to this problem exist, most of them 
are using explicit rules that need to be specified by the program or by the user (there are, 
however, also approaches that use self-learning probabilistic methods such as Bayesian Nets). 
Our goal was to develop a powerful spam-filter that learns fully autonomously from individual 
examples provided by the user, i.e. it learns to imitate its user’s classification strategy. 
Techniques from neuroinformatics such as neuronal networks fulfill these criteria. In particular, 
SVMs are well suited for this task, as they have outstandingly good generalization performances 
and are based on sound mathematical grounds which makes it straightforward to use them. 

In the following, we will give a short introduction into the theory of SVMs for the non-
familiar reader. Section two will discuss different possibilities how to preprocess text data to be 
used by support vector techniques. In a third section, the architecture of our program is described 
as it was presented at CeBIT 2004. Section four discusses and evaluates its advantages and 
disadvantages. Finally, we assess the performance of our program and give an outlook of how it 
could be further improved. 
 
 
Theory of Support Vector Machines1

 
Binary classification is one of the most important tasks that can be treated using neural networks. 
Input vectors are to be classified into two classes. This is exactly the situation when we want to 
separate e-mails into spam and non-spam.  

Neural networks use a finite training set consisting of vectors x ∈ ℜn of dimension n 
together with corresponding class labels d ∈ {+1, -1}. Vectors with class label +1 are called 
positive instances; vectors with label –1 are called negative instances. A neural network is 
trained to correctly classify such training vectors. We expect appropriate generalization to take 
place after training in the sense that the neural network also correctly classifies (most) unseen 
instances. Aspects that influence training success and generalization ability are: (i) The network 
must be powerful enough to allow for a (approximate) solution of the task under consideration. 
This can be achieved by choosing a model with many parameters (neurons, hidden layers, 
weights). (ii) The more parameters we have the more expensive is the process of training. An 
efficient training algorithm is required to achieve rapid training, particularly in situations where a 
network is to be retrained very often (as is the case with the Spam problem). (iii) The network 
must be not too powerful in order to prevent overfitting.  

Model selection is a severe problem. In the context of feed-forward networks, for 
example, pruning algorithms reduce the amount of neurons and weights, feature selection 
appropriately designs the input interface of the network, genetic algorithms optimize network 
topology. Nevertheless, finding an appropriate feed-forward network for a given learning task 
may be a difficult and time-consuming task.  

Support vector machines solve all of these problems in an elegant and mathematically 
well-founded manner. From an architectural point of view, a SVM looks like a simple 
Perceptron, a device consisting solely of n input neurons that receive the coordinates of an input 
vector x, and a single output neuron that predicts the class label of x by summing up the 
coordinates of x in a weighted manner and firing if this weighted sum exceeds a certain 

 
1 The reader familiar with SVMs may skip this section. 

 2



 
 

threshold. Having real-valued weights w1, …, wn and threshold –b, the model thus looks as 
follows:  
 
 

x1 

xn 

 
w1  

 
 

Input  
 
 wn 
 
 
 
Geometrically expressed, class separation by a Perceptron means that the hyperplane H = { x ∈ 
ℜn / w, x + b = 0} separates positive from negative instances: Positive instances fall into the 
positive halfspace H+ = { x ∈ ℜn / w, x + b > 0}, and negative instances fall into the negative 
halfspace H- = { x ∈ ℜn / w, x + b < 0} defined by H. Here, w, x  denotes the usual inner 
product in n-dimensional real space, that is w, x = wi ⋅ xi

i=1
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Training of a Perceptron usually is done by the Perceptron algorithm that changes the actual 
weight vector w into w + x, when seeing a randomly chosen positive instance x that is 
incorrectly classified into H-, and into w – x, when seeing a randomly chosen negative instance 
that is incorrectly classified into H+. The famous Perceptron Convergence Theorem states that 
for a linearly separable training set finally a weight vector is found that indeed separates positive 
from negative instances.  

Problems with Perceptrons are: Training sets often are not linearly separable. Embedding 
them into a larger input space (by defining further features) often makes them linearly separable, 
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but leads to more weights thus leading to worse generalization and longer training times. 
Convergence time of the Perceptron algorithms may be long.  
 In Learnability Theory, generalization ability of models can be quantitatively defined. In 
the case of the Perceptron it can be shown that generalization depends on the so-called margin of 
the hyper-plane H with respect to the training set, that is, on the minimum distance points from 
the training set have to H, but it does not depend on the input dimension n. The example below 
supports the idea that margin maximization improves generalization. The indicated hyperplane 
has a greater margin than the formerly proposed one – and seems to separate positive from 
negative examples in a more robust manner:   
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SVMs compute the separating hyperplane H having maximal margin with respect to the 

training set by solving (in an efficient manner) a corresponding standard quadratic optimization 
problem that results from a Lagrangian formulation of the problem and transformation into its 
dual problem (technical details are omitted).  

Generalization ability is guaranteed by theorems from statistical learnability theory like 
the following: 
 

Let labelled data (x,d) be drawn according to a fixed, by unknown distribution 
P(x,d) with the constraint that only vectors x ∈ ℜn of norm less than a fixed value 
R are drawn. Define for each hyperplane H the generalization error ErrP(H) with 
respect to the distribution H as the probability to draw a labelled vector (x,d) which 
is misclassified by hyperplane H. Correspondingly, define for each training set T 
consisting of m labelled vectors (x,d) the empirical error Erremp(T,H) as the number 
of elements of T that are misclassified by H, divided by m. Finally, the probability 
of occurrence of T, P(T), is defined assuming that labelled vectors (x,d) are 
independently drawn according to distribution P. Note that Erremp(T,H) can be 
simply calculated, given training set and hyperplane H, whereas ErrP(H) cannot be 
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calculated, unless the distribution P is known (and simple enough). Nevertheless, 
ErrP(H) is the number we are interested in.  
  Now the following holds true: Given a number δ between 0 and 1 (called 
confidence), with probability greater that 1 - δ any training set T of m labelled 
vectors drawn independently according to P has the property that any hyperplane H 
with margin at least µ with respect to T has generalization error at most  

2
m
⋅ (64 ⋅ R2

µ2 ⋅ log e ⋅ m ⋅ µ
8 ⋅ R2 ⋅ log 32 ⋅ m

µ2 + log 4
δ

)  

 
Ignoring mathematical details of the approach and the formula, the essential message is that 
quality of generalization scales with R2/µ2 and 1/m (m = Number of training examples). The 
additional term log(4/δ) simply expresses that the more confident we want to be the more liberal 
we must be with the expected generalization error. So, the greater the margin is, the better 
generalization is. The appearance of radius R in R2/µ2 is easily explained: Scaling up vectors by 
a constant factor c would increase margin also by a factor of c, but obviously would not affect 
generalization error. So, the quotient R/µ can be the only meaningful measure for generalization 
quality.  

A second message of the formula is that input dimension n has no influence on 
generalization ability. This means that we must not worry too much about the amount of input 
features. In particular, having a not linearly separable task, it offers the opportunity to embed 
input space into an enlarged feature space without loss in generalization ability thus increasing 
the chance to obtain a linearly separable task. As a simple example, consider the non-separable 
XOR-problem in 2-dimensional space. Positive instances (0,1) and (1,0) cannot be linearly 
separated from negative instances (0,0) and (1,1).    

  
 
 
 
 
 
 
 
Now add the additional feature that is simple the product (logical AND) of the first two 
coordinates to obtain positive instances (0,1,0) and (1,0,0), and negative instances (0,0,0) and 
(1,1,1). The problem becomes linearly separable. 
 
 
 
 
 
 
 
 
 
 

 5



 
 

Embedding input space ℜn by a function Φ into some feature space ℜN with N that usually is 
much greater that n (even Hilbert spaces H of infinite dimension are allowed as feature spaces) 
improves separability without causing problems with respect to generalization ability. 
Nevertheless, another problem comes up: Finding hyperplanes with maximal margin involves an 
extensive amount of computations of inner products. Obviously, it makes a difference whether 
this has to be done in input space of low dimension n or in feature space of high dimension N. 
One final trick also solves this problem: Embeddings Φ: ℜn → ℜN that are used in practise 
usually have the property that the inner product <Φ(x),Φ(y)> between two feature vectors can be 
calculated from the inner product <x,y> between the input vectors and then applying a simply 
calculable kernel function K: <Φ(x),Φ(y)> = K(<x,y>). 
 Consider an embedding that generalizes the one used above by calculating all products 
of  0, 1 or 2 input coordinates, that is, all monomials up to degree 2:  
 

Φ(x1, x2) = (1, x1, x2, x1x1, x1x2, x2x1, x2x2).  
 
We calculate: 
 
 <Φ(x1, x2),Φ(y1, y2)>   

= <(1, x1, x2, x1x1, x1x2, x2x1, x2x2), (1, y1, y2, y1y1, y1y2, y2y1, y2y2)>  
  = 1 + x1y1 + x2y2 + x1x1y1y1 + 2x1x2y1y2 + x2x2y2y2  

= (1 + x1y1 + x2y2)2  
= (1 + <(x1, x2), (y1, y2)>)2  
= K(<(x1, x2), (y1, y2)>) 

 
The used Kernel function K(p) = (1 + p)2 is an instance of so-called polynomial kernels. Other 
kernels are the Gaussian Kernels  

Kσ (x, y) = e
−

x−y 2

2⋅σ 2
 

leading to the well-known Radial-Basis-Function networks, or tangens hyperbolicus 

KΘ,T (x, y) = tanh( xT y −Θ
T

)  

leading to the standard feedforward networks (under suitable choice of the parameters Θ and T).  
The choice of an appropriate kernel function is essential. Here is the place where specific 

domain knowledge about the problem under consideration may be integrated into the 
architecture of a SVM. There are rather elaborate kernel functions that are well suited for the 
problem of text categorization – though our experience with the Spam problem was that the 
simpler standard kernels (as e.g. polynomial kernels) are already sufficient to successfully attack 
the problem.  

Summarizing, SVMs are attractive since (i) they are grounded on a clear mathematical 
foundation that explains and guarantees generalization ability (ii) rapid training is possible based 
on standard techniques of quadratic optimization and the choice of suitable kernel functions (iii) 
any feature that appears to be relevant to the problem can be freely used without compromising 
generalization ability. This made the model attractive for the Spam problem especially due to the 
fact that a rather simple linguistic preprocessing could be chosen without running into danger of 
overfitting.    
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Linguistic Preprocessing 
 
When using SVMs, one basic consideration is the transformation from text documents to 
mathematical representations. Most prominent is the bag-of-words approach, also called vector 
space model. In this approach, documents are transformed to vectors whose entries represent the 
presence of key words in the document. This requires that beforehand a dictionary of key words 
is chosen from which it is possible to categorize a document. The choice of this dictionary is an 
essential task since the whole classification will depend upon it. 

A document vector, i.e. the mathematical vector representing a text document, may 
contain different kinds of information. At first, one has to decide what kind of terms are to be 
represented. It is straightforward to use fully inflected words as terms, so that for example “run” 
and “running” are handled as two different entries. The more sophisticated choice is to use word 
stems as representation units so that closely related words are treated as the same. This requires a 
preprocessing with a stemming algorithm. 

Vectors may contain Boolean variables that indicate the presence of the corresponding 
term in the document. It is also possible to represent the number of occurrences of the 
corresponding term in the text. Weighting factors may be added that introduce the information of 
the ratio between the total number of documents and the number of documents containing the 
specific term so that special attention is given to rare words that are believed to be significant. 
Finally, document vectors may be normalized to exclude the influence of document length. 

Depending on dictionary size, resulting vectors may be very large. This might lead to 
overfitting when using other techniques, however it is a key characteristic of SVMs to achieve 
better results proportionally to the amount of given training data. Furthermore, single document 
vectors are sparse since they do not contain most of the dictionary words. Therefore, in general it 
should be easy to build a separating hyperplane in the corresponding feature space. Likewise, 
there are fast techniques for calculating the inner products of sparse vectors. These inner products 
form the central algorithmic part of a SVM since they compute the similarity of two elements, i.e. 
of two documents in the context of text categorization. Underlying this approach is the 
assumption that two documents are similar if they contain the same characteristic words, even if 
they occur in a different order. The size of the resulting vectors depends upon the size of the 
dictionary. The choice of an appropriate dictionary is the essential preparation step for text 
classification by mathematical means. It implicitly contains the domain knowledge by specifying 
the characteristic terms that make up the classification decision. A possible way to construct a 
dictionary is to ask experts that name all those terms that are important according to their 
experience. This corresponds to giving explicit rules. Using such explicit rules is severely 
criticized since it is error-prone and does not correspond to the goal of creating autonomous 
systems. Systems should learn themselves what characteristics are needed. In the field of text 
classification, they shall only be given labeled training examples from which they extract 
significant terms. This is a form of supervised machine learning. An easy way to do so is to parse 
all words contained in the training examples and to construct a statistics, measuring the numbers 
of term occurrences in each category. By comparing the statistics of a given term for the different 
categories, one may calculate how meaningful this term is for a certain category in comparison to 
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other categories. On these grounds, one can construct a dictionary that contains only the most 
significant terms. It is reasonable to assume that uninformative words such as “and”, so called 
stop-words, are automatically ignored since they should be uniformly distributed over all training 
examples and categories. 

There are various more sophisticated techniques than the ones described here which may 
lead to better classification results. For example, information about word order is lost in a bag-of-
word approach. Much work is currently spent on string kernels that are able to deal with discrete 
input such as sets of structures (e.g. strings) as opposed to vector spaces as input. For example, 
they are able to deal with subsequences of words and therefore deliver more sophisticated 
estimates of the similarity of documents. However, they are not as straight-forward and 
computationally efficient as the techniques described above. On the other hand, they can 
renounce on preprocessing steps such as computing word stems since they look directly at 
subsequences of words. 
 
 
Architecture of our Program SpamStop 
 
In our implementation, we assume that the user provides two folders containing e-mails classified 
as desired e-mails and spam e-mails respectively. These two sets are then parsed into strings, 
where one string is a sequence of more than three letters separated from the next by white space. 
Shorter sequences, punctuation marks and special characters are simply considered white space. 
The resulting strings are then converted to uppercase and put into two lists, a string not yet 
present in the corresponding list (desired/spam) is added with an initial counter value of one, and 
otherwise the counter of the string is increased by one. Currently neither a semantic nor a 
syntactic mapping algorithm, like e.g. stemming, is used. The simplicity of this approach is one of 
its major strengths, since we did not want to put our intuitive ideas of tricks which spammers use 
to bypass simple word matchers, for example “M.E.D.I.C.I.N.E” instead of “medicine”, into the 
program in order to keep it free of hardwired world knowledge which might – at best – get 
outdated or – even worse – be misleading. The same holds for semantic mappings, since meaning 
of a word might depend on its grammatical form and its context. An additional learning algorithm 
or a steadily updated online database could help here in the future. 
 Having thus generated lists of most prominent good and bad strings, the lists are then 
checked for overlaps. In case there is an identical string found in both lists the higher counter gets 
decreased by the value of the lower counter and the latter one is removed from its list. Now from 
both lists the 50 strings with the highest counters are selected as future features. 
 These features are now used to transfer the mails of the two training sets into their 
numerical representation: a 100-dimensional vector of binary values, each position representing 
exactly one feature. Every e-mail is parsed as above and for every position of the vector it is 
checked whether the corresponding feature occurs at least once in it. If so, the position’s value is 
set to one, otherwise it is set to zero.  

Now the core training can start: Different pre-defined Kernel functions are tried with k-
fold cross validation, meaning that the training set is divided into k sets and k-1 of them are used 
for training while the remaining one is used to test the resulting model’s accuracy in classifying 
the e-mails. The model yielding the highest accuracy is used for classification. 
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 Today there are lots of different e-mail clients competing on the market and running on 
different operating systems. We wanted our program to run on the user’s computer, instead of the 
server, to reflect the individual classification criteria of users. So we had to be as platform and 
client independent as possible. Having made these considerations, we decided to implement 
SpamStop in Java for which a runtime environment (virtual machine) exists for almost all 
operating systems. Secondly, SpamStop works as a proxy server, i.e. the client does not, as usual, 
ask the provider’s mail server for new e-mails but our program which in turn asks the server. 
Technically, SpamStop listens to a pre-defined port on the computer where it is installed and the 
client is configured to direct requests to this port on that computer. Thus, it would be easily 
possible to run it on a remote server as well, provided that either the individually trained model is 
present on the server or a common model is used for all users. The latter means of course losing 
the advantage of individual classification criteria but might be applicable in environments where 
those criteria are homogenous, e.g. in companies. Currently only the widely used Post Office 
Protocol, version 3, (POP3) is supported. The richer but rarely used Internet Message Access 
Protocol (IMAP) is not implemented yet. 
 In case that there are new e-mails to be received, they are transferred from the provider’s 
server to SpamStop, classified as described, and then handed over to the users e-mail client. Every 
incoming message is converted to its vector representation using the features extracted in the first 
part of the training as described above and then fed into the SVM using the individual model 
which resulted from the core part of the training. The SVM returns not only whether the e-mail 
was on the good or on the bad side of the separating hyperplane in the 100-dimensional “e-mail 
space”, i.e. whether it was more similar to the positive or negative training instances. It also 
indicates the distance to that hyperplane. Should the e-mail have been on the bad side, i.e. 
supposedly is spam, this value is used as certainty measure of the classification. It is mapped on a 
procentual probability, where “far away from the hyperplane” means 100 percent – this is spam 
for sure – while a small value would yield a lower percentage indicating that the user should have 
a look at it. At the moment only a warning and the probability are added to the subject line of the 
corresponding e-mail before it is handed over to the e-mail client. Combined with simple rules of 
the kind “IF Subject CONTAINS ‘100% Spam’ MOVE_TO Trash”, which most e-mail clients 
support, this is already quite convenient. 
 
 
Discussion and Program Evaluation 
 
 In comparison to other approaches to the classification of e-mail, our program SpamStop 
has several advantages, making it well suited to the user’s desires. 

Unlike in most other Spam categorization solutions, classification criteria are learned 
from the user’s individual training examples. When these criteria are either handcrafted by 
experts or learned from e-mails which a (maybe hair-breadth) majority considers spam there is 
not much of the user’s personal attitude left. This becomes crucial in the context of annoyances 
like stalking where the user receives personalized mail of similar content from varying addresses. 
Furthermore, one has to account for the possibility that a user wants to receive messages that the 
majority rejects, such as loan offers. 

This example leads to a second advantage of SpamStop, its flexibility in the adaptation to 
new kinds of spam e-mail. Since only training examples influence the classification model, new 
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kinds of spam e-mail are likely not to be detected by the system. This appears to be a handicap for 
SpamStop, but is in fact one of its advantages. While other, rule-based, systems have to costly 
develop new rules to account for the new spam types, SpamStop needs only to be retrained on an 
extended example set which contains besides the old examples instances of the new spam type. 
SpamStop will automatically develop new filter criteria adapted to the new situation. 

SpamStop is not only based on spam e-mail a user gets, but also makes use of desired e-
mail considering them as positive instances. The characteristics of desired e-mail give thereby a 
second indication system which enhances the classification abilities of the system for difficult and 
unclear e-mail since it allows for a third classification category: while there were only 
“guaranteed spam” and “unclear, resp. unlikely to be spam” before, it is now possible to assess an 
e-mail as “guaranteed desired”. Therefore, classification becomes more precise and 
unambiguously. For the remaining unclear cases, estimation is used as described above. 
 Although briefly mentioned before, we shall state another advantage of SpamStop: its 
total independence of handcrafted rules. This feature gets extremely important considering the 
development of spam e-mails. Spammers have long started to adapt to common rules and to 
undergo them. Therefore rule based systems will always have the problem of an outdated rule 
basis. To perform the necessary update is both costly and inconvenient. As described, our 
program presents a better approach to this problem as the updating process is limited to the pure 
statement of what is a new Spam. In fact, only a constant permutation of every spam e-mail could 
undergo this. But even then, probably not every word of every new e-mail could be changed 
while persevering the sense, thus leaving the chance for SpamStop to focus on and learn the 
context surrounding the key word in all variations (e.g. sex, S_E_X, intercourse,…). Other 
approaches focus on terms either in a boolean way (IF term IN_EMAIL THEN Spam) or add up 
points (IF term IN_MAIL THEN spam_value+=3) and consider it Spam if the sum exceeds a 
threshold. Since the SVM looks at the position of the vector representing the whole e-mail in 
relation to the hyperplane, co-occurences of words do matter. That is, the combination of 
“money”, “interest” and “rate” might lead to a 100 percent Spam classification while one of the 
words alone could be neutral or even a positive indicator. 
 
 
Performance and Outlook 
 
Although no official benchmark was conducted to assess the performance of our program 
SpamStop, we are able to evaluate it on the basis of our own tests and controlled versions running 
for several moths on different desktop computers. 

Firstly, in order to work properly, SpamStop needs to be trained with enough data. 
Although, as discussed above, the general rule for Support Vector Machines states “the more 
data, the better the results”, a critical number of training instances being sufficient to start with 
was empirically determined. Over all different training sets and all test runs, two hundred e-mails, 
about one hundred of each category, is enough in order for SpamStop to work to a satisfying 
degree. It is true however, that performance gets better with more training instances. 

In its current version, SpamStop has a correctness performance of 90% to 95%, i.e. it 
reaches the same percentages as the leading products on the market. There are rarely false 
positive classifications. The remaining 10% to 5% are mainly very ambiguous e-mail like 
electronic greeting cards, which often include advertisements in the very same e-mail. 
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When trying to evaluate these numbers, one has to bear in mind that SpamStop does not 
yet include a variety of standard pre-filtering mechanisms, which should be included in a possible 
end-user product. This has not yet been done since it was the main goal of this study to assess the 
possibility of using a single SVM for filtering spam e-mail. So long, each incoming e-mail is 
examined in the same way. If standard pre-filtering methods were applied, clearly positive and 
negative e-mails would be removed beforehand, thus allowing SpamStop to focus on the grey 
area in-between. Since they are not incorporated, out of the variety of mechanisms, only some 
shall be briefly mentioned here. 

It is popular to preprocess e-mail accordingly to its sender’s address. Lists are maintained 
which name spam-senders on the one hand (“black list”) and known persons on the other (“white 
list”). If the sender’s address of an incoming mail is in either of the two lists, that e-mail is not 
further considered, but directly sorted into the corresponding category instead. The program 
architecture of SpamStop would even allow improving this technique further, using addresses in 
the training sets. With this trick, it could be possible to capture ambiguous cases as the mentioned 
example of the electronic greeting cards, given that there is at least one instance among the 
positive instances. 

Another recent method to filter out a lot of undesired e-mails is to ask the server from 
which the corresponding e-mail apparently originated whether the sender’s address really exists 
there. 

Since SpamStop is up to now only a client based system, another aspect of how SpamStop 
could be improved, is to further develop it to incorporate it into networks. This could be easily 
fulfilled with a paradigm of local training and global filtering. The model used for the 
classification, could be applied to e-mail directly on the server. This would prevent a lot of 
unnecessary traffic caused by spam e-mails and would therefore be a valuable tool against the 
spam flood that is expected during the next years. 
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