



## Item-based Prediction of Reaction Times in Priming: an Evaluation of Distributional Semantic Models

Gabriella Lapesa Stefan Evert University of Osnabrueck FAU Erlangen Nurnberg glapesa@uos.de stefan.evert@fau.de

## Models

| Distributional Semantic Models<br>(DSMs) represent word meaning in                                                                                                                                     | Corpus (5)                        | Wac,<br>UkW     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|
| terms of patterns of co-occurrence                                                                                                                                                                     | Window (3)                        | 2, 5,           |
| erms of patterns of co-occurrence<br>encoded in distributional vectors.<br>shared contexts $\leftrightarrow$ shared meanir<br>distance<br>between $\leftrightarrow$ semantic<br>similarity/<br>vectors | Part-of-Speech<br>Information (3) | no po<br>pos o  |
| shared contexts ↔ shared meaning<br>distance semantic                                                                                                                                                  | Score (6)                         | frequ<br>LL, D  |
| between<br>vectors similarity/                                                                                                                                                                         | Transformation (3)                | no tra<br>sigm  |
|                                                                                                                                                                                                        | Distance Measure (3)              | cosir           |
| Depending on the choices of specific                                                                                                                                                                   | Dimensionality<br>Reduction (3)   | no re<br>sitior |

| Parameter                         | value                                                                            |
|-----------------------------------|----------------------------------------------------------------------------------|
| Type of DSM                       | Term-term (cfr. HAL)                                                             |
| Corpus (5)                        | BNC, Wp500, WaCkypedia_EN, Uk-<br>Wac, Joint (BNC+WaCkypedia_EN,<br>UkWac)       |
| Window (3)                        | 2, 5, 15 words (left and right)                                                  |
| Part-of-Speech<br>Information (3) | no pos, pos on target,<br>pos on targets and features                            |
| Score (6)                         | frequency, Mutual Information, Simple-<br>LL, Dice coefficient, z-score, t-score |
| Transformation (3)                | no transformation, root, logarithmic, sigmoid transformation                     |
| Distance Measure (3)              | cosine, euclidean, manhattan                                                     |
| Dimensionality<br>Reduction (3)   | no reduction, singular value decompo-<br>sition (300 dimensions),                |

## Data

Materials from a number of priming studies (Ferretti et al., 2001; McRae et al. 2005; Hare et al. 2005)

**404** word triples composed by a target, a consistent prime and an inconsistent prime.

For every triple, the following information is available:

Decision or naming latencies for con-

| Dataset                | Relation        | Ν  | Effect |
|------------------------|-----------------|----|--------|
|                        | Agent           | 28 | 27 *   |
| V-N<br>(Forrotti ot ol | Patient         | 18 | 32 *   |
| (renetti et al. 2001)  | Patient Feature | 20 | 33 *   |
| -                      | Instrument      | 26 | 32 *   |
|                        | Location        | 24 | -5     |
|                        | Agent           | 30 | 18 *   |
| N-V                    | Patient         | 30 | 22 *   |
| (MCRae et al. 2005)    | Instrument      | 32 | 16 *   |
| ,                      | Location        | 24 | 18 *   |
|                        | Event-People    | 18 | 32 *   |
|                        | Event-Thing     | 26 | 33 *   |
| N-N                    | Location-Living | 24 | 37 *   |

parameters, different DSMs are sensitive to different relations (Sahlgren, 1996). This study is a large scale evaluation of a number of DSMs parameters (38800 combinations).

random indexing (1000 dimensions)

distance, rank of target in prime's Relatedness Index (4) neighbors (forward rank), rank of prime in target's neighbors (backward rank), average rank

gruent and incongruent conditions; • Semantic relation holding between target and prime (16 relations over the 3 datasets);

| (Hare et al. | Location-Thing    | 30 | 29 * |  |  |  |  |
|--------------|-------------------|----|------|--|--|--|--|
| 2005)        | People-Instrument | 24 | 45 * |  |  |  |  |
|              | Instrument-People | 24 | -10  |  |  |  |  |
|              | Instrument-Thing  | 24 | 58 * |  |  |  |  |

How to interpret modeling results when so many combinations of parameters are involved? Analysis of mean/range of performance and/or identification of "best model" are not fully satisfactory (see Lapesa & Evert, 2013)

## Method

#### Task 1: Pearson correlation between semantic distance and RTs (congruent)

**Q:** Which parameters have a significant effect on model performance? Are there differences among datasets?

Method: We analyze the influence of parameters and interactions using linear models with absolute correlation as a dependent variable and model parameters as independent variables.

#### Task 2: Item-based prediction of RTs with different corpus-based predictors **Q:** Can DSMs predict priming at the item level? Hutchinson et al. (2008): no effect for LSA. How about bag-of-words DSMs? **Method:** We conduct linear regression with priming effect in ms as a dependent variable and different types of corpusbased predictors as independent variables.

Distributional modeling of priming is usually carried out in terms of significance analysis of the difference of means. Problems: a) DSMs have been found to overestimate priming effects b) significance analysis does not take into account RTs

## **Correlation to RTs**

### Verb-Noun (Ferretti et al. 2001)

0.2 -

| Parameter | Df | R²(%) | р   |
|-----------|----|-------|-----|
| corpus    | 4  | 0.87  | *** |
| window    | 2  | 0.30  | *** |



# **Rel. Index \* Dim.Reduction**

forw rank

Corpus \* Rel. Index

ukwac

back\_ran

avg\_rank

forw\_rank

back rank

0.18

0.16

0.14

0.12

0.1

0.08

bnc

002aw

tal setting?

wacky

Best value is here back-

ward rank, suggesting

that NV priming may be

strongly influenced by the

activation of the neighbors

of the target. Counterintui-

tive, given the experimen-

⊟-ri

rsvd

avg rank

## **Item-based Prediction**

#### **Predictors**

#### **First-order predictors**

Co-occurrence frequency, joint corpus, 15 words (left & right):

- a. Target-prime co-occurrence frequency (*fo\_freq*)





#### Noun-Verb (McRae et al. 2005)

| Parameter         | Df | <b>R</b> <sup>2</sup> (%) | р   |
|-------------------|----|---------------------------|-----|
| corpus            | 4  | 1.35                      | *** |
| window            | 2  | 0.28                      | *** |
| pos               | 2  | 1.34                      | *** |
| score             | 5  | 0.28                      | *** |
| trans             | 3  | 0.17                      | *** |
| distance          | 2  | 0.39                      | *** |
| dim.red           | 2  | 1.71                      | *** |
| rel.index         | 3  | 8.27                      | *** |
| corpus:rel.index  | 12 | 7.12                      | *** |
| rel indevidim red | 6  | 4.02                      | *** |



#### Noun-Noun (Hare et al. 2009)



b. Rank of target in prime's collocates (*fo\_forw*) c. Rank of prime in target's collocates (fo\_back)

#### **DSM predictors**

Based on semantic relatedness in 4 DSMs, identified by Lapesa and Evert (2013) as best model and best setting in two tasks (global dataset): accuracy in picking up consistent primes (bow\_1, best model, 96.5%; bow\_2, best setting: 93.5%); Pearson correla*tion* to congruent RTs (*bow\_3*, best model, .47 *r; bow\_4*, best setting:.43 *r*).

a.Target-prime semantic distance (*dsm\_dist*) b.Rank of target in prime's nearest neighbors (*dsm\_forw*)

c.Rank of prime in target's nearest neighbors (*dsm\_back*)

#### **Term-document predictors**

Based on a LSA-like (term-document, similar parameters, Wp500 corpus):

a.Target-prime semantic distance (*Isa\_dist*) b.Rank of target in prime's nearest neighbors (*Isa\_forw*) c.Rank of prime in target's nearest neighbors (*Isa\_back*)

We performed linear regression with priming effect (ms) as a dependent variable and semantic relation, first order, term-document, and DSM predictors as independent variables.

We tested all two way interactions between corpus parameters, and used backward stepwise regression (based on AIC) to select the best model.

| Results       |                |         | V  | <b>/-N</b>                |     |                   |                       |        | Ν   | -V             |    |                   |                |         | N    | I-N                     |    |
|---------------|----------------|---------|----|---------------------------|-----|-------------------|-----------------------|--------|-----|----------------|----|-------------------|----------------|---------|------|-------------------------|----|
| Model         | R <sup>2</sup> |         |    | р                         |     | Model             | <b>R</b> <sup>2</sup> |        |     | р              |    | Model             | R <sup>2</sup> |         | ;    | р                       |    |
| Bow_1         | 48             | 760     |    | **                        |     | Bow_1             | 33                    | 847    |     | *              |    | Bow_1             | 23             | 153     | 7    | *                       | _  |
| Bow_2         | 52             | 759     |    | **                        |     | Bow_2             | 27                    | 844    |     | **             |    | Bow_2             | 23             | 154     | 1    | *                       | _  |
| Bow_3         | 51             | 742     | 7  | ***                       |     | -> Bow_3          | 41                    | 839    |     | **             |    | Bow_3             | 15             | 1536    | 3    | *                       | _  |
| Bow_4         | 54             | 744     | ,  | ***                       |     | Bow_4             | 25                    | 846    |     | *              |    | → Bow_4           | 23             | 153     | 6    | *                       |    |
| V-N datas     | et: DSI        | M evalı | ua | tion                      | l   | N-V datas         | et: DS                | M eval | lua | tion           |    | N-N datase        | et: DS         | M eva   | alua | atio                    | n  |
| Paran         | neter          | c       | df | R <sup>2</sup>            | р   | Paran             | neter                 |        | df  | R <sup>2</sup> | р  | Param             | neter          |         | df   | R <sup>2</sup>          | p  |
| relation      |                |         | 3  | 9                         | **  | lsa_dist          | lsa_dist              |        | 1   | 5.2            | ** | relation          |                |         | 6    | 4                       | *  |
| dsm_forw      |                |         | 1  | 4                         | *   | dsm_back          |                       |        | 1   | 4.2            | *  | dsm_forw          |                |         | 1    | 2                       | -  |
| lsa_dist      |                |         | 1  | 4                         | *   | dsm_dist:lsa_dist |                       |        | 1   | 6.9            | ** | dsm_back          |                |         | 1    | 2                       |    |
| dsm_dist:ls   | a_dist         |         | 1  | 9                         | **  | dsm_dist:lsa_back |                       |        | 1   | 4.4            | ** | fo_forw:dsm_back  |                |         | 1    | 4                       | ** |
| lsa_dist:lsa_ | _back          |         | 1  | 9                         | **  | lsa_dist:lsa_     | lsa_dist:lsa_forw     |        | 1   | 4.2            | *  | fo_freq:lsa_back  |                |         | 1    | 4                       | *  |
| fo_freq:dsm_  | _back          |         | 1  | 8                         | **  | lsa_dist:lsa_back |                       |        | 1   | 3.8            | *  | dsm_dist:lsa_back |                |         | 1    | 2                       | *  |
| fo_freq:fo_ba | ack            |         | 1  | 4                         | *   | fo_freq:fo_fc     | fo_freq:fo_forw       |        | 1   | 1.8            |    | lsa_dist:lsa_forw |                |         | 1    | 2                       |    |
| fo_back       |                | -       | 1  | 2                         | •   | dsm_back:ls       | sa_dist               |        | 1   | 1.7            |    | N-N: item-bas     | sed pr         | redicti | ion  | ( <b>R</b> <sup>2</sup> | :2 |
| /-N: item-ba  | sed pr         | edictio | n  | ( <b>R</b> <sup>2</sup> : | 51) | dsm_dist:lsa      | a_forw                |        | 1   | 1.4            |    |                   |                |         |      |                         |    |
|               |                |         |    |                           |     |                   |                       |        |     | -              |    |                   |                |         |      |                         |    |

best values. Differences for

#### **References & Acknowledgments**

T. Ferretti, K. McRae, and A. Hatherell. 2001. Integrating verbs, situation schemas, and thematic role concepts. Journal of Memory and Language, 44(4):516–547 / M. Hare, M. Jones, C. Thomson, S. Kelly, and K. McRae. 2009 Activating event knowledge. Cognition, 111(2):151–167 / K. A. Hutchinson, D. A. Balota, M. J. Cortese, and J. M. Watson. 2008. Predicting semantic priming at the item level. The Quarterly Journal of Experimental Psychology, 61(7):1036–1066 / K. McRae, M. Hare, J. L. Elman, and T. Ferretti. 2005. A basis for generating expectancies for verbs from nouns. Memory & Cognition, 33(7):1174–1184 / G. Lapesa and S. Evert, 2013. Evaluating neighbor rank and distance measures as predictors of semantic priming. In Proceedings of the ACL Workshop on Cognitive Modeling and Computational Linguistics, Sofia. We are grateful to Ken McRae for providing the data and for his contribution to the development of this study.

#### Discussion

N-V: item-based prediction (R<sup>2</sup>:41)

1 1.1

#### Corpus-based predictors do have an effect in item-based prediction.

lsa\_back:lsa\_forw

• Lot of variation by changing DSM: importance of evaluation (possible improvement: running regression with all models in the study).

- Interactions are powerful, but not always straightforward to interpret (possible improvement: selecting "meaningful" interaction before regression).
- Ongoing analyses show that explained variance improves significantly with z-scores (e.g., Bow\_4,N-N, R<sup>2</sup>:42;AIC: 229).