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Abstract

The parametrized dynamics of a standard nonlinear model neuron with
self-interaction is discussed. For units with a self-excitatory connection a
hysteresis effect is observed, and the underlying mechanism is identified
as that of a cusp catastrophe. This is true for discrete as well as for
continuous dynamics. For the discrete dynamics of self-inhibiting units
there appear period-doubling bifurcations from stationary states to stable
period-2 orbits.
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1 Introduction

With respect to information processing applications oscillatory dynamics so far
is considered less important then convergent dynamics. In fact, most models
of artificial neural networks, like e.g. Hopfield type networks [1], feedforward
networks [2], and the class of network models satisfying the Cohen-Grossberg
stability criterion [3], have convergent activation dynamics (see [4] for a review).
This is a reasonable choice, since for applications like associative or content ad-
dressable memories, pattern classification, etc. one wants the input information
to be represented by a stationary output of the network (see [5], [6] for anthology).

On the other hand, from nonlinear dynamics one knows that recurrent net-
works in general exhibit oscillatory or even chaotic dynamics. In fact, oscillatory
dynamics in biological systems has been observed on various functional levels:
For instance, it plays a role in central pattern generators, which drive rhythmic
motor outputs [7]. In [8] and [9] it was suggested that odors are stored as limit
cycles of the dynamics in the olfactory bulb, and that chaotic dynamics may
play a role in olfactory information processing. Finally, cell assemblies in the
visual cortex oscillating synchronously in response to external stimuli have been
reported in [10], [11], [12].

First models simulating the olfactory dynamics [13], [14] or visual cortex dy-
namics [15], [16], [17], [18], [19], [20], [21] provide ideas, how the emergent proper-
ties of biological brains are related to complex dynamics, and how computational
abilities may be generated by oscillatory networks. A collection of recent results
can be found in [22].

The oscillatory dynamics of recurrent networks of reasonable size is in general
difficult to describe, e. g. because mathematical tools for the analysis of periodic
orbits in high dimensional phase spaces are still not sufficiently developed. But
since network dynamics can be represented as a parametrized dynamical system
on activation space [4], parameter studies of (discrete) neurodynamics can help
to provide an understanding of the generic behavior of recurrent networks. This
was demonstrated e. g. in [23], [24] and [25].

In this situation we suggest a modular approach to oscillatory neurodynamics,
which will be described elsewhere. Nevertheless, as a very first step along this
direction, this paper analyses the dynamics of single neuron. A simple additive
nonlinear model neuron with self-interaction is chosen, and the corresponding
dynamics is parametrized by the input I and the self-connection w. The following
questions are posed: What is the qualitative behavior in depence of the two
parameters? Is there a difference between discrete and continuous dynamics?

Section 2 discusses the discrete dynamics, showing, that for self-excitatory
units hysteresis effects and for self-inhibitory units stable oscillations can be ob-
served for specific parameter domains. In Sec. 3 analysis of the continuous
dynamics reveals hysteresis effects for the self-excitatory case but globally asymp-
totically stable [4] dynamics for the self-inhibitory unit. A summary of the results
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is given in Sec. 4.

2 Discrete Dynamics

We choose the standard additive nonlinear neuron model, i.e the activation ai of
unit i is given by the sum over the weighted outputs oj of units j connected to
unit i plus a bias term θi:

ai :=
n

∑

j=1

wijoj + θi . (1)

The output oi of unit i is given by a sigmoidal (S-shaped) transfer function σ,
i.e. σ is a bounded, monotone increasing function of the activation ai. Here we
choose

oi := σ(ai) , (2)

with transfer function

σ(a) :=
1

1 + e−a
. (3)

Grossberg [26] introduced sigmoidal transfer functions for contrast-enhancing the
inputs and limiting the dynamic range of a unit. Since then this kind of nonlinear
output has been used in a wide variety of neural network models, e.g. in [2] and
[27].

We will consider the discrete dynamics of a single neuron with self-interaction
w (see Fig. 1) given by

a(t + 1) := w · σ(a(t)) + θ , t ∈ N . (4)

The parameter θ is interpreted here as the sum of the fixed bias θ0 and the variable
total input I of the unit. Thus the dynamics (4) is given by a two parameter

Figure 1: Model neuron with self-interaction.

family of maps P : R1 → R1

a 7→ P (a, θ, w) , a ∈ R1, (θ, w) ∈ R2 . (5)

3



Figure 2: Parameter domains for I. one stable equilibrium, II. two stable, one
unstable equilibrium, III. stable period-2 orbit and unstable equilibrium.

By simulating this dynamics we observe three different regions in the (θ, w)-
space (compare Fig. 2). In region I there exists a unique stable equilibrium for
the system. To parameter values in region II there correspond three stationary
states, one unstable and two stable, i.e. there are two coexisting fixed point
attractors. In region III an unstable equilibrium and a stable period-2 orbit is
observed.

The cubic nonlinearity of region II suggests that the mechanism of a cusp
catastrophe [28], [29], [30], [31] may govern the dynamics in this self-excitatory
(w > 0) domain. In fact, if for w > 4 we pass forward and backward through the
parameter domain −10 < θ < 0, we observe the typical hysteresis effect for the
output.

The existence of three stationary states a∗ for units with self-excitation (w >
0) may be seen intuitively in Fig. 3a. As solutions of the fixed point equation

a∗ = P (a∗, θ, w) := θ + wσ(a∗) , (6)

they are given by the intersection of the sigmoid (3) with the straight lines f(a) =
(a − θ)/w.

The existence of a period-2 orbit for the self-inhibiting neuron (w < 0) can
be visualized as in Fig. 3b. The orbit is given by the intersection of the function

g(a) := σ(θ + wσ(a)) (7)

with the straight lines f(a) = (a − θ)/w. This is derived from the period-2 orbit
condition

a = P 2(a) := θ + wσ(θ + wσ(a)) . (8)

Furthermore, the functions σ, g and f all intersect in one point corresponding to
a stationary state a∗.
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a) b)

Figure 3: a) Three stationary states given by the intersection of the straight line
f(a) with the sigmoid σ(a) b) Period-2 orbit given by the intersection of f(a)
with the function g(a) of Eq. (7).

A stationary state a∗ is stable iff | ∂
∂a

P (a∗)| < 1, i. e.

|w · σ′(a∗)| < 1 . (9)

Since 0 < σ′ = σ(1 − σ) ≤ 1/4, all stationary states a∗ are stable for |w| < 4.
Interesting dynamics therefore will be found in the domains w ≥ 4 and w ≤ −4
of (θ, w)-space.

One may introduce as an additional control parameter the gain of the sigmoid
by replacing the transfer function (3) by

σr(a) := σ(r · a) , r > 0 . (10)

The stability condition (9) for a stationary state a∗ then reads

|w · r · σ′(a∗)| < 1 , r > 0 . (11)

For the moment we will fix the gain by setting r = 1.

2.1 Self-excitatory connections

The boundary of region II (w > 0) is called the bifurcation set B+. It is defined as
the set of parameters values (θ, w) ∈ R2 for which the stationary states a∗ given
by equation (6) are non-hyperbolic with an eigenvalue of +1, i.e. ∂

∂a
P (a∗) = 1 or

w · σ′(a∗) = 1 . (12)

Especially, the fixed point a∗ = 0 is non-hyperbolic with eigenvalue +1 for the
parameter values (θc, wc) = (−2, 4).

To verify the assumption that B+ corresponds to the bifurcation set of a cusp
catastrophe [28], [29], [30], [31] we have to find a potential V (a; θ, w) underlying
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the dynamics (4). Recall, if there exists such a potential V , the set M ∈ R1×R2

of stationary states (here of the discrete dynamics) is given by

M := {(a, θ, w) |
∂V (a, θ, w)

∂a
= 0} , (13)

and the set C ⊂ M of catastrophe points is given by

C := {(a, θ, w) ∈ M |
∂2V (a, θ, w)

∂a2
= 0} . (14)

The projection of C to the (θ, w)-space is called the bifurcation set B given by

B := {(θ, w) ∈ R2 | ∃a ∈ R1 with (a, θ, w) ∈ M} . (15)

Now, using the expansion of the sigmoid (3) around zero

σ(a) =
1

2
+

1

4
a −

1

48
a3 +

1

480
a5 − · · · , (16)

and using only terms up to order 3, the condition for stationary states reads

a − θ

w
= σ(a) =

1

2
+

1

4
a −

1

48
a3 . (17)

Shifting the critical point (θ = −2, w = 4) to the origin by replacing θ and w by
θ′ = θ + 2 and w′ = w − 4, the condition for the stationary states is given by

a3 − 12
w′

w′ + 4
· a − 24

2θ′ + w′

w′ + 4
= 0 . (18)

The corresponding potential giving rise to this condition has the form

V (a, θ′, w′) =
1

4
a4 − 6

w′

w′ + 4
a2 − 24

2θ′ + w′

w′ + 4
a . (19)

It can be transformed to the normal form of the universal unfolding [28] of the
cusp catastrophe given by

Ṽ (a, u, v) =
1

4
a4 +

1

2
ua2 + va , (20)

where

u := −12
w − 4

w
, v := −24

2θ + w

w
. (21)

The point in M corresponding to (u, v) = (0, 0) or (θc, wc) := (−2, 4), respectively,
is called the cusp catastrophe. This proves the following

Lemma 1 : The discrete dynamics (4) of a self-excitatory unit, i.e. w > 0, is
governed by a cusp catastrophe at (θc, wc) := (−2, 4).
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Near the cusp catastrophe the bifurcation set B+ is approximated by the equation

(2θ + w)2 −
4

9
·
(w − wc)

3

w
= 0 . (22)

For a fixed self-excitatory connection w > 4 the hysteresis effect appears over
an θ-interval with endpoints θ1, θ2 approximately given by

θ1,2 = −
w

2
∓

(w − wc)

3

√

(w − wc)

w
. (23)

Taking the gain parameter r into account, the stationary state a∗ is now given
by the equation a∗ = θ + w · σ(r · a∗). Using again the expansion (16) together
with the stability condition (11) one gets for the cusp catastrophe

(θc, wc)(r) = (−
2

r
,
4

r
) , r > 0 , (24)

i.e. the cusp catastrophe moves along the straight line 2θ + w = 0 for r → ∞
to the origin. The qualitative behavior remains the same as for r = 1, but the
bifurcation set B+ for r 6= 1 is shifted and slightly deformed: For a fixed self-
connection w > 4/r Eq. (23) for the endpoints of the hysteresis interval remains
valid, with wc now given by Eq.(24).

At points (θ, w) ∈ B+ in addition to the stationary state one stable and one
unstable stationary state do appear (or disappear) (see Fig. 4a).

a) b)

Figure 4: a) Stationary states for w = 8, dashed line: unstable fixed point b)
Period-doubling bifurcations for w = −8, dashed line: unstable fixed point.

2.2 Self-inhibitory connections

The boundary of region III in Fig. 2, called the bifurcation set B−, is the set of
parameter values (θ, w) ∈ R2 for which the stationary states a∗ given by (6) are
non-hyperbolic with an eigenvalue of −1, i.e. ∂

∂a
P (a∗) = −1 or

w · σ′(a∗) = −1 . (25)
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Since σ′ > 0 this can appear only for a self-inhibitory unit, i.e w < 0. Especially,
the fixed point a∗ = 0 is non-hyperbolic with eigenvalue −1 for the parameter
values (θc, wc) = (2,−4).

At this non-hyperbolic fixed point the following equations hold for the map
P 2:

∂

∂w
P 2 = 0 ,

∂2

∂a2
P 2 = 0 , (26)

∂2

∂a∂w
P 2 6= 0 ,

∂3

∂a3
P 2 6= 0 . (27)

These equations provide sufficient conditions (compare e.g. [32], p. 373) for
the system (4) to undergo a period-doubling bifurcation at the bifurcation point
(θc, wc) = (2,−4). This proves that at B− we have bifurcations from a stable
stationary state to a stable period-2 orbit (or the reverse) as shown in Fig. 4b.

Using again expansion (16) of σ up to order 3, the bifurcation set B− is
approximated near the singular point (a, θc, wc) := (0, 2,−4) by the following
equation:

(2θ + w)2 −
4

9
·
(w + 2wc)

2(w − wc)

w
= 0 . (28)

For a fixed self-inhibitory connection w < −4 oscillations occur over an θ-
interval with endpoints θ1, θ2 approximately given by

θ1,2 = −
w

2
∓

(w + 2wc)

3

√

(w − wc)

w
. (29)

Again, the introduction of a gain parameter r 6= 1 will not change the quali-
tative behavior of the unit, however the bifurcation set B− is shifted and slightly
deformed. The critical point

(θc, wc)(r) = (
2

r
,
−4

r
) , r > 0 , (30)

is once more shifted to the origin with increasing r, and the oscillatory interval
for fixed w < −4/r is approximated by Eq. (29) with wc now given by (30).

3 Continuous Dynamics

We will now compare the results obtained for the discrete dynamics with the
additive continuous dynamics of a single unit given by

ȧ = −γa + θ + wσ(a) , γ > 0 , (31)

where γ represents the decay rate. Analogously to the discrete case, we consider
the right hand side as a two parameter vector field f(a, θ, w); i.e. γ will be

8



considered as a constant. For γ = 1 a discretized version of this equation is given
by

a(t + ∆t) = (1 − ∆t)a(t) + ∆t(θ + wσ(a)) , t ∈ R , (32)

which corresponds to the discussed dynamics (4) if ∆t = 1.
From the point of bifurcation theory, the continuous dynamics is less rich than

the discrete one, since oscillations cannot occur for one dimensional systems. We
will show that the continuous dynamics of the self-excitatory neuron is again
controlled by a cusp catastrophe potential.

The fixed points a0 of the dynamics (31) are solutions of the equation

−γa0 + θ + wσ(a0) = 0 . (33)

A bifurcation will appear [32], if the fixed point a0 becomes non-hyperbolic,
i.e. if Daf((a0, θ0, w0) = 0 or

−γ + w · σ′(a0) = 0 . (34)

Since γ > 0 and σ′(a) > 0 for all a, this can only happen iff w > 0. The fixed
point a0 = 0 is non-hyperbolic for the critical parameter values

(θc, wc) = (−2γ, 4γ) . (35)

Thus for w < 4γ the system will have a unique stable equilibrium.
Since every one dimensional dynamics can be written as a gradient dynamics,

we get

f(a, θ, w) = −
∂V (a, θ, w)

∂a
. (36)

Using again the expansion (16) of σ around a = 0 we have

f(a, θ, w) =
1

2
(2θ + w) +

1

4
(w − 4γ)a −

1

48
wa3 · · · , (37)

and the condition (33) for stationary states reads

a3 − 12
(w − 4γ)

w
a − 24

(2θ + w)

w
= 0 . (38)

Shifting the critical point (θc, wc) to the origin by introducing θ′ = θ + 2γ and
w′ = w − 4γ this condition transforms to

a3 − 12
w′

w′ + 4γ
· a − 24

2θ′ + w′

w′ + 4γ
= 0 , (39)

and the desired potential V has the form

V (a, θ′, w′) =
1

4
a4 − 6

w′

w′ + 4γ
a2 − 24

2θ′ + w′

w′ + 4γ
a . (40)

By a diffeomorphism V can be transformed again into the normal form (20) of
the universal unfolding of the cusp catastrophe. The cusp catastrophe is now
lying at (a, θc, wc) = (0,−2γ, 4γ). This proves
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Lemma 2 : The continuous dynamics (31) of a self-excitatory unit, i.e. w > 0,
is governed by a cusp catastrophe at (θc, wc) = (−2γ, 4γ).

We observe, that for γ = 1 the last two equations are identical with (18)
and (19), respectively. For self-excitatory connections w > 0 the bifurcation
set B ⊂ R2 for the continuous dynamics (31) with γ = 1 is identical with the
bifurcation set B+ of the discrete dynamics.

The bifurcation set near the cusp catastrophe is again approximately described
by Eq. (22), where (θc, wc) is now given by (35). The effect of a decreasing decay
rate γ → 0 on B is the same as an increasing gain parameter r → ∞ on B+: the
cusp is shifted to the origin. Furthermore for γ = 1/r the bifurcation sets B and
B+ are identical.

4 Discussion

A single unit without self-interaction behaves as a simple non-linear input/output
map, i.e. o = σ(θ0 + I). Interesting effects show up if self-connections w are
introduced.

For a self-excitatory connection w > 0 discrete and continuous dynamics show
qualitatively the same behavior. It is characterized (compare region II of Fig. 2)
by the following

Statement 1 : The discrete and continuous dynamics of a single self-excitatory
unit is governed by the potential of a cusp catastrophe (θc, wc). For 0 < w < wc

the unit has a unique fixed point attractor for all input values I ∈ R1. For w > wc

and a zero bias term θ0 there exists an interval of negative inputs for which the
unit has three stationary states, two stable and one unstable. Varying the inputs
over this intervall results in a hysteresis effect.

Using the gain r of the sigmoid as an additional control parameter of the
discrete dynamics will not change its qualitative behavior. Variation of r will
move (24) the cusp catastrophe along the straight line 2θ + w = 0, such that
the critical value wc approaches zero with increasing r. For a fixed connection
w > wc the hysteresis interval is growing with increasing r.

For the continuous dynamics, setting r = 1, the same holds true (35) for a
decreasing decay rate γ.

Functionally, hysteresis phenomena where discussed as models for short-term
memory of neural systems for instance in [33], [34] and [35]. For single neurons
hysteresis effects where described e.g. in [36].

The cusp catastrophe already played a central role in Zeeman’s model of nerve
cell dynamics [37]. His nerve membrane equations provided a simpler alternative
to the well-known Hodgkin-Huxley equations [38].
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For units with self-inhibitory connections w < 0 discrete and continuous dyna-
mics are quite different. While the continuous dynamics is globally asymptotically
stable, i.e. has a unique fixed point attractor for all inputs I ∈ R1, the discrete
dynamics (compare region III of Fig. 2) shows stable oscillatory behavior:

Statement 2 : For the discrete dynamics of a single self-inhibitory unit there
exists a critical value wc < 0 with the following property: For wc < w < 0 the unit
has a unique fixed point attractor for all input values I ∈ R1. For w < wc there
exits an interval of input values for which the unit has a period-2 orbit attractor.
At the border of these intervals there appears a period-doubling bifurcation. Thus
self-inhibitory units can serve as oscillators.

With increasing gain parameter r of the sigmoid the critical value wc shifts
toward the origin (30). The critical point (θc, wc) for the self-inhibitory unit is
the point reflection of the cusp catastrophe of the self-excitatory unit.

Finally, it should be emphasized that the qualitative results, i.e. hysteresis
effect and period-2 orbits, are independent of the particular choice (3) of the
sigmoidal transfer function. Recall that a sigmoid is defined as a bounded mono-
tone increasing function. Different sigmoids will have different critical parameter
values (θc, wc). For example, with Eqs. (6), (9) and r = 1 the critical values for
a ”balanced” sigmoid

σ(a) = −1 +
2

1 + e−a

are given by (θc, wc) = (0,±2), and for tanh as transfer function we get (θc, wc) =
(0,±1). Like the last two examples, antisymmetric sigmoids, i. e. σ(−a) =
−σ(a), will generate bifurcation sets B+ and B− symmetric around θ = 0.

Using the definitions in [4], the difference between discrete and continuous
dynamics can be summerized in

Statement 3 : The continuous additive dynamics (31) of a single unit with self-
connection is convergent for all parameter values. The discrete dynamics (4) of
a self-inhibitory unit displays stable oscillations for a distinct parameter domain.

Although the single units have an easy to control dynamics, already recur-
rent neuro-modules with only two units show an extremely rich behavior. In a
forthcoming paperit is demonstrated, that the discrete dynamics of a 2-module
with units having no self-connections display hysteresis effects, bifurcation to
coexistent period-2 orbits and two fixed points, and bifurcations to period-4 or-
bits (compare also [25]). Allowing self-connections, simulations display various
period-n orbits, with n odd or even, quasiperiodic orbits and even chaotic at-
tractors. Various bifurcation scenarios like period-doubling to chaos and Hopf
bifurcations from fixed points to period-n orbits, n > 2, or to quasiperiodic or-
bits are observed. Albeit it is difficult to control the 2-module dynamics (there
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are 6 control parameters involved), it becomes clear, that the coupling of two
excitatory or inhibitory units has dynamical effects quite different from those
resulting from couplings between excitatory and inhibitory units.
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