
Evolved Neurocontrollers for Pole-Balancing ∗

Frank Pasemann

Research Center Jülich, IBI 1
D-52425 Jülich, Germany

email: f.pasemann@kfa-juelich.de

Ulf Dieckmann

International Institute for Applied Systems Analysis, ADN
A-2361 Laxenburg, Austria

email: u.dieckman@iiasa.ac.at

Abstract

An evolutionary algorithm for the development of neural networks
with arbitrary connectivity is presented. The algorithm is not based on
genetic algorithms, but is inspired by a biological theory of coevolving
species. It sets no constraints on the number of neurons and the archi-
tecture of a network, and develops network topology and parameters
like weights and bias terms simultaneously. Designed for generating
neuromodules acting in embedded systems like autonomous agents, it
can be used also for the evolution of neural networks solving nonlinear
control problems. Here we report on a first test, where the algorithm
is applied to a standard control problem: the balancing of an inverted
pendulum.

∗in: J. Mira, R. Moreno-Diaz, J. Cabestany (Eds.), Biological and Artificial Compu-

tation: From Neuroscience to Technology, Proceedings IWANN’97, Lanzarote, Canary
Islands, Spain, June 1997, Springer Verlag, Berlin, pp. 1279 - 1287.

1

1 Introduction

The combined application of neural network techniques and genetic algo-
rithms turned out to be a very effective tool for solving an interesting class
of problems (for a review see e.g. [10], [5], [14], [1]), especially in situations
where there is no good guess for an appropriate network architecture or
where recurrent dynamic networks should be used for tasks like generation
of temporal sequences, recognition, storage and reproduction of temporal
patterns, or control problems which require memory to compute derivatives
or integrals.

The algorithm introduced in section 2 is inspired by a biological theory of
coevolution and is not based on genetic algorithms. It uses standard additive
neuron models with sigmoidal transfer functions and sets no constraints on
the number of neurons and the architecture of a network. It develops net-
work topology and parameters like weights and bias terms simultaneously.
Using a behavior based approach to neural systems, the algorithm origi-
nally was designed to study the appearence of complex dynamics and the
corresponding structure-function-relationship in artificial sensomotoric sys-
tems for autonomous robots or software agents. For the solution of extended
problems (more complex environments or sensor-motor systems) the synthe-
sis of evolved neuromodules forming larger neural systems can be achieved by
evolving the coupling structure between modules. This is done in the spirit
of coevolution of interacting species. We suggest that this kind of evolution-
ary computation is better suited for evolving neural networks then genetic
algorithms.

Here we report on a first test of the algorithm, applying it to the pole-
balancing problem. The inverted pendulum is one of the simplest inherently
unstable systems and represents a wide class of control problems requiring
avoidance of costly or harmful conditions. Usually it serves as a bench-
mark problem for trainable controllers [9]. The goal here is to evolve neural
controllers able to balance an inverted pendulum mounted on a cart and
centering the cart simultaneously. This is decribed in section 3. Besides
conventional control techniques, there have been many successfull applica-
tions of neural networks to this problem [2], [4], [7], [11], [6], [13], which
can be compared with solutions obtained by the presented evolutionary al-
gorithm. Using continuous neurons for the controllers, different from many
other results, our approach does not make use of quantization, neither of the
physical phase space variables nor of internal parameters, like weitghts and
bias terms, and output values. Section 4 gives a discussion of the results.

2 The evolutionary algorithm

We first have to decide which type of neurons to use for the network. We
prefer to have the same type of neurons for output and internal units; the
input units may be used as buffers as in feedforward networks. Then the
number of input and output units is choosen according to the definition of
the problem in terms of incoming sensor and outgoing motor signals. Nothing
else is determined, neither the number of internal units nor their connectivity,
i.e. self-connections and every kind of recurrences are allowed as well as
excitatory and inhibitory connections; but no backward connections to the
input units are allowed.

To evolve the desired neuromodule we consider a population p(t) of n(t)
neuromodules undergoing a variation-evaluation-selection loop. The varia-
tion part of the variation-evaluation-selection loop then allows for the inser-
tion and deletion of neurons and connections. After evaluating the perfor-
mance of the networks in the population with respect to the problem consid-
ered, a new population is generated from the old population. The number
of network copies passed from the old to the new population depends on the
network’s performance. In consequence of this selection process the average
performance of the population will either stay the same or increase. Thus, af-
ter repeated passes through the variation-evaluation-selection loop networks
have build up in the population that solve the considered problem.

We now outline the three major steps of the variation-evaluation-selection
loop.

1. Variation
The variation operators include insertion and deletion of neurons, in-
sertion and deletion of connections, and alterations of bias and weight
terms. The associated operators acting on the ith member of the pop-
ulation p are denoted by N+

i , N−

i , C+
i , C−

i , N∗

i and C∗

i respectively. A
variation pass is then described by

V : p(t) 7→
n(t)∏

i=1

C∗

i C
+
i C−

i N∗

i N+
i N−

i p(t) .

The operators N∗,+,−
i , C∗,+,−

i are of stochastic character. The chance
that they will execute their respective action is determined by fixed
per-neuron and per-connection probabilities. In a more complex ver-
sion the variation operator V may also induce the exchange of entire
subnetworks between members of the population p.

2. Evaluation

The evaluation operator

E : p(t) 7→ (p(t), e(t))

is problem-specific. In its simplest form the performances ei(t) of the
n(t) networks in the population p(t) are mutually independent. As
an example, for a classification task the performance of each member
of the population could be based on an error function [8], like those
utilized by the backpropagation learning algorithm. The evaluation
operator usually will be deterministic; more sophisticated versions may
also account for network size and past performance. Furthermore, in-
teractions between members of the population can be defined via an
artificial sensomotoric loop opening up the potential for coevolutionary
dynamics.

3. Selection
Differential survival of the varied members of the population is defined
by the selection operator. Possible definitions range from (a) proba-
bilistic survival according to evaluation results to (b) winner-takes-all
selection. The selection operator is given by

S : (p(t), e(t)) 7→
n(t)∏

i=1

R
ν(ei(t))
i p(t) .

Here Ri is the reproduction operator for the ith network in the popu-
lation p. Consequently, ν(ei(t)) copies of each such network are passed
to the new population. In case (a), applied in the following, these
integer numbers ν are stochastic variables drawn e.g. from Poisson dis-
tributions with mean values larger than 1 if ei(t) >

∑n(t)
i=1 ei(t)/n(t)

and mean values smaller than 1 for the other networks in the popula-
tion p. Case (b) is defined by ν(ei(t)) = n(t) if ei(t) = maxi ei(t) and
ν(ei(t)) = 0 otherwise.

The evolution of the population p is then generated by repeated application
of the mapping

p(t) 7→ SEV p(t)

on the initial population p(0).

3 Evolved pole-balancing controllers

The pole-balancing task has three simultaneous objectives: balancing an
inverted pendulum, which is mounted on a cart moving in a one-dimensional

interval, avoiding the interval boundaries, and centering the cart. We use
the standard benchmark values described for instance in [3], i.e. the cart
is bound to move in the interval −2.4 < x < 2.4 [m], the angle is allowed
to vary in the interval −12 < θ < 12 [◦]. Since we will use neurons with
sigmoidal transfer function the force applied to the cart varies continuously
between −10 < F < 10 [N]. We also use additional damping terms according
to [4]. The equations for the physical system being controlled is thus given
by

θ̈ = −
g sin θ + cos θ [−F−ml θ̇2 sin θ+µc sign(ẋ)

mc+m
] − µp θ̇

m l

l [4
3
− m cos2 θ

mc+m
]

ẍ =
F + m l [θ̇2 sin θ − θ̈ cos θ] − µc sign(ẋ)

mc + m

where g denotes gravitational acceleration, mc = 1.0 kg and m = 0.1 kg mass
of cart and pole, respectively, l = 0.5 m half of pole length, µc = 5 · 10−4 and
µp = 2 · 10−6 friction coefficient of cart and pole, respectively, and F denotes
the force applied to the cart. The cart-pole-dynamics is computed by using
Euler discretization with time step ∆ = 0.01 s.

For the neural controller we will use the following standard additive neu-
ron model with sigmoidal transfer function σ = tanh, i.e.

ai :=
n∑

j=1

wijσ(aj) + θi

A failure signal is given if |x| > 2.4 or |θ| > 12◦ or balancing time t
exceeds a given time tmax. The fitness function f for the evaluation of an
individual modul takes into account costs for each neuron and for each con-
nection (to obtain kind of minimal networks), and the balancing time until
failure. Furthermore, the applied force integrated over the balancing time
can enter the fitness function. This will optimize the applied force to balance
the pole, i.e. in general this will minimize oscillations of the cart. Thus, the
fitness function for an evaluated module has the general form

f := P − costn · Nn − costs · Ns − costF · IF

where P denotes the output performance of a module given by

P :=
n∑

i=1

(
1

2
(1 −

15 · |θ(i)|

π
) + (

1

2
(1 −

|x(i)|

2.4
)) · ∆ ,

with n the maximal number of iterations; i.e. the maximal balancing time
is tmax = n ·∆. The constants costn, costs, and costF describe the costs of a
neuron, a synapse, and the applied force, respectively; Nn and Ns denote the
number of neurons and of synapses in the module, and the integrated force
term IF is given by

IF =
1

tmax

n∑

i=1

|F (i)| · ∆ .

It turned out, that simulations with populations of 20 - 30 individuals are
optimal. During intermediate states of the evolutionary process the fittest

modules may become quite large - more than 40 neurons and 100 synapses
- and network size and architecture are often varied. Finally there appear
smaller modules with equally good or better performance.

3.1 4-input-modules

As sensor signals we first choose the full set of physical statet variables x,
θ, ẋ, θ̇ of the cart-pole-system. This means that we have four input units
receiving here the input signals:

in1 :=
x

2.4
, in2 :=

15 · θ

π
, in3 :=

ẋ

2.4
, in4 :=

15 · θ̇

π
. (1)

The output unit provides the force applied to the cart by

F = 10 · σ(a5(t)) .

For initial conditions confined to the benchmark domain, it is well known (see
e.g. [12]) that there exist neural network solutions using only the output unit
and no internal neurons. Different from the classical networks, which used
binary output units (−1, 1) providing a pulsed force to the cart (bang-bang
control), here a continuous force is applied. The following is a test, if the
evolutionary algorithm is able to generate such minimal solutions. In fact,
besides a whole family of larger modules, it came up with these minimal
solutions. One of them is shown in figure 1a. Its weight vector is given by

w5 = (θ5, w51, . . . , w54) = (0.031, 14.68, 13.88, 20.00, 3.41) .

We test this configuration on 40 x 40 benchmark initial conditions (x, θ,
ẋ = θ̇ = 0.0) represented by squares in figure 1b. Outer squares represent
initial conditions which will already produce a failure signal. We observe,
that the module avoids the ends of the interval very effectively; furthermore
it centers the cart, and balances a long time (> 120 s). Although the module
was evolved with initial conditions x and θ inside the benchmark domain,
we observe, that it performs well also on initial condition far outside this
domain. Other modules which evolved in simulations, using for instance one
hidden neuron, performed equally good. Some of them utilized also internal
oscillators, which came into action only if the physical system reached critical
phase space domains. If there was no optimizing condition for the applied
force (costF = 0), almost all solutions solved the balancing problem with a
continuously oscillating cart.

Figure 1: a.) A minimal solution with four inputs and b.) its performance
on benchmark initial conditions. Balancing time t > 120 s: black and t < 30
s: white.

3.2 2-input-modules

Reducing the inputs to the control module to only the cart position and the
pole angle makes the problem for the controller more sophisticated. It now
has to compute the derivatives ẋ and θ̇, and therefore modules with recurrent
connections have to be expected. As inputs we choose

in1 :=
x

2.4
, in2 :=

15 · θ

π
. (2)

The simplest kind of evolved modules used in fact only the output neuron
with a self-connection and no hidden units, as shown in figure 2a. Although
these solutions do balancing and avoiding on benchmark initial conditions
quite well (compare figure 2b), they do not center the cart. Instead, they
let the cart oscillate around the zero position with an apparently constant
amplitude, without hitting the walls. The amplitude is given by the initial
cart position. The solution displayed in figure 2 has the weight vector

w3 = (θ3, w31, . . . , w33) = (0.0,−1.23, 16.22,−0.72) .

Again, also larger modules evolved with equally good performance, but none
of them suppressed the cart oscillations.

Figure 2: a.) A minimal solution with two inputs and b.) its performance
on benchmark initial conditions. Balancing time t > 120 s: black and t < 30
s: white.

4 Discussion

We have demonstrated that the evolutionary algorithm presented here can be
applied successfully to the pole balancing problem. The evolved solutions are
remarkable small when compared with solutions obtained by classical control
techniques or pure feedforward networks. We also observe a strong effect of
the “survival conditions” on the topology of evolved networks: If there is no
condition to minimize the applied force for balancing, solutions tend to use
internal oscillators realized for instance by inhibitory self-connections. We
have also observed solutions making use of switched oscillators, which come
into action only if the physical system enters critical phase space domains.
Furthermore, the evolved controllers were quite robust in the sence, that a
moderate noise on the input signals did not effect their performance.

Since we have not found yet 2-input modules which suppress the oscilla-
tions of the cart, we evolved controllers, which only had to center the cart
starting from any position in the benchmark interval. With two inputs (x, ẋ)
simple solutions evolved, which brought the cart into the central position
without any swing around zero. Using only the cart position as input, the
cart still oscillated around zero, but now with a damped oscillation, bring-
ing the cart finally at rest at zero. But these solutions did not survive, when
implemented into the extended problem of balancing the pole simultaneously.

We used also different setups to study corresponding solutions. For ex-
ample we used neurons with standard sigmoidal transfer function σ(x) =

(1 + e−x)−1. Then two output units are needed, providing a force given e.g.
by F = 10 ·(σ(a5)−σ(a6)) for a 4-input module. The evolutionary algorithm
provided a couple of interesting solutions, among others, a minimal 4-input
solution with only four connections to one output unit (unit 5), and a second
constant output (unit 6). This solution is of course comparable with the
above solution for the tanh transfer function.

The algorithm still can be optimized. For instance the evaluation op-
erator in the variation-evaluation-selection cycle may be substituted by an
evaluation-learning cycle, if an appropriate learning procedure is at hand.
This is of course the case for classical problems solved by feedforward net-
works. That the evolutionary algorithm introduced here is capable to gen-
erate also such solutions was reported in [8], although, due to the extensive
computation time, it can not compete with learning algorithms like back-
propagation. Instead it has the advantage, that it produces unconventional
not strictly layered solutions which may be worth-while to study.

Besides the first test presented here, further simulations on more difficult
problems, like for instance balancing a rotator, indicate, that the evolutionary
algorithm may be effectively applied to many nonlinear control problems.

References

[1] Albrecht, R. F., Reeves, C. R., and Steele, N. C. (eds.), Artificial Neural
Nets and Genetic Algorithms, Proceedings of the International Confer-
ence in Innsbruck, Austria, 1993, Springer, Wien 1993.

[2] Anderson, C. W. (1989). Learning to control an inverted pendulum using
neural networks. IEEE Control Systems Magazine, 9, 31 - 37.

[3] Anderson, C. W. and Miller W. T. (1990). Challinging Control Prob-
lems. In W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks
for Control, MIT Press.

[4] Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike
adaptive elements that solve difficult learning control problems. IEEE
Transactions on Systems, Man, Cybernetics, 13, 834 - 846.

[5] Branke, J. (1995). Evolutionary algorithms for neural network design
and training. In Proceedings 1st Nordic Workshop on Genetic Algorithms
and its Applications, Vaasa, Finland.

[6] Bapi, R. S., D’Cruz, B., and Bugmann, G. (1996) Neuro-resistive grid
approach to trainable controllers: A pole balancing example, submitted
to Neural Computing and Applications.

[7] Dasgupta, D., and McGregor, D. R. (1993). Evolving neurocontrollers
for pole balancing. In S. Gielen and B. Kappen (eds.), ICANN’93 Pro-
ceedings of the International Conference on Artificial Neural Networks,
Amsterdam 13.-16. Sept. 1993. Berlin: Springer-Verlag, 1993, pp. 834-
837.

[8] Dieckmann, U. (1995), Coevolution as an autonomous learning strategy
for neuromodules, in: Herrmann, H., Pöppel, E., and Wolf, D. (eds.),
Supercomputing in Brain Research - From Tomography to Neural Net-
works, Singapore: World Scientific, (pp. 331–347).

[9] Geva, S., and Sitte, J. (1993), A cartpole experiment benchmark for
trainable controllers, IEEE Control Systems Magazin, 13, 40-51.

[10] Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992). Combination of
genetic algorithms and neural networks: A survey of the state of the art.
In: Proceedings International Workshop on combinations of genetic al-
gorithms and neural networks (COGANN-92), Los Alamitos, CA, IEEE
Computer Society Press.

[11] Selfridge, O. G., Sutton, R. S., and Barto, A. G. (1985). Training and
tracking in robotics. In Proceedings International Joint Conference on
Artificial Intelligence (IJCAI-85), Los Angeles, CA, pp: 670 - 672.

[12] Widrow, B. (1987), The original adaptive neural net broom-balancer.
Proc. IEEE Intern. Symp. Circuits and Systems, 351 - 357.

[13] Wieland, A. P. (1991). Evolving neural network controllers for unstable
systems. In: International Joint Conference on Neural Networks, Seat-
tle, USA, July1991. Proccedings Vol.2. Seattle: IEEE Service Center,
1991.

[14] Yao, X. (1993). A review of evolutionary artificial neural networks. In-
ternational Journal of Intelligent Systems, 8, 539 - 567.

