
Pole-Balancing with different Evolved

Neurocontrollers ⋆

Frank Pasemann

Max-Planck-Institute for Mathematics in the Sciences,
D-04103 Leipzig, Germany

email: pasemann@mis.mpg.de

Abstract. The paper presents various evolved neurocontrollers for the
pole-balancing problem with good benchmark performance. They are
small neural networks with recurrent connectivity. The applied evolution-
ary algorithm, which is not based on genetic algorithms, was designed to
evolve neural networks with arbitrary connectivity. It uses no quantiza-
tion of inputs, outputs or internal parameters, and sets no constraints on
the number of neurons. Network topology and parameters like weights
and bias terms are developed simultaneously.

1 Introduction

The inverted pendulum is one of the simplest inherently unstable systems and
provides a wide class of control problems. Pole-balancing usually serves as a
benchmark problem for trainable controllers [9]. The task is given as follows: An
inverted pendulum is mounted on a cart, which can move on a finite interval.
A controller, providing a finite force to the cart, then has to balance the pole
by avoiding the interval boundaries, and has to center the cart simultaneously.
Besides conventional control techniques, there have been many successful appli-
cations of neural networks to this problem [2], [3], [4], [5]. Different from many
other methods, our approach does not make use of quantization, neither of the
physical phase space variables nor of internal network parameters, like weights
and bias terms, and output values.

We used pole-balancing to test the capabilities of an evolutionary algorithm,
which is not based on genetic algorithms (GA). It was mainly designed to evolve
recurrent neural networks, which should be able to use internal dynamics for
(higher) information processing, and to study the relation between behavior
oriented function and structure of the evolved neural networks [6], [7]. Different
from most GA algorithms, it sets no constraints neither on the number of neurons
nor on the architecture of a network. Network topology and parameters like
synaptic weights and bias terms are developed simultaneously.

⋆ in: Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-D. (eds.), Artificial Neural
Networks - ICANN’97, Lausanne, Switzerland, October 1997, Proceedings, LNCS
1327, Springer-Verlag, pp. 823 - 829.

Although the combined application of neural network techniques and genetic
algorithms turned out to be a very effective tool for solving an interesting class
of problems (for a review see e.g. [10], [11], [1]), we suggest, that the algorithm
outlined in section 2 is better suited for the evolution of recurrent neural net-
works; especially in situations, where there is no good guess for an appropriate
network architecture or where recurrent dynamic networks should be used for
tasks like generation of temporal sequences, recognition, storage and reproduc-
tion of temporal patterns, or control problems, which require memory to compute
derivatives or integrals.

2 The evolutionary algorithm

To start the evolutionary algorithm (for details see [6] or [7]), we first have to
determine the type of neurons of the network. We use the same type of neurons
for output and internal units, and input units are used as buffers (as in feedfor-
ward networks). Then the number of input and output units is chosen according
to the definition of the problem in terms of incoming (sensor) and outgoing (mo-
tor) signals. Nothing else is determined, neither the number of internal units nor
their connectivity, i.e. self-connections and every kind of recurrences are allowed
as well as excitatory and inhibitory connections.

To evolve the desired controllers we consider a population p(t) of n(t) neu-
romodules undergoing a variation-evaluation-selection loop, i.e.

p(t + 1) = S · E ·V p(t) . (1)

The variation operator V acts on each individual neuromodule separately and
includes operators for insertion and deletion of neurons, insertion and deletion
of connections, and for alterations of bias and weight terms. These operators are
of stochastic character, and execute their respective action by fixed per-neuron
and per-connection probabilities.

The evaluation E of individual neuromodules is defined problem-specific. As
described in [7], for the pole-balancing problem the performance of a network
is determined by balancing time until failure, costs per neuron and synapse (to
obtain kind of minimal networks), and - for optimization - costs for the applied
force and for deviations from the zero position of cart and pole.

Differential survival of the varied members of the population is defined by the
selection operator S. Here it is defined as probabilistic survival according to the
evaluation results, i.e. the number of network copies passed from the old to the
new population depends on the network’s performance. In consequence of this
selection process the average performance of the population will either stay the
same or increase. Thus, after repeated passes through the variation-evaluation-
selection loop, networks will emerge that solve the considered problem.

3 Evolved pole-balancing controllers

For simulation of the cart-pole system we use the standard dynamics and bench-
mark values defined in [9], i.e. the cart position is |x| < 2.4[m], the angle

is |θ| < 12[◦], and the force applied to the cart varies continuously between
−10 < F < 10[N]. We use no damping terms for the cart-pole dynamics nad
compute it by using Euler discretization with time step ∆ = 0.02s.

In the following we present and discuss different evolved neurocontrollers.
There are two classes of controllers, one, called t-class, uses additive units with
anti-symmetric transfer function tanh(x), the other one, the s-class, uses the
strictly positive transfer function σ(x) = (1+e−x)−1. The first class of controllers
needs only one output neuron providing a force F = 10 · tanh(ai)[N], where
ai denotes the activity of output unit i. The s-class needs two output units,
i and i + 1, giving a force F = 10 · (σ(ai) − σ(ai+1))[N]. Using the relation
tanh(x) = (2σ(2x) − 1) = (σ(2x) − σ(−2x)) an architecture from one class may
be converted to an equivalent one in the other class, but here we wanted to
study, if there will evolve specific architectures for each class of controllers.

Evolved controllers having the full access to phase space information of the
cart-pole system appear to be very simple. Their four input signals are propor-
tional to cart position x and velocity ẋ, pole angle θ and angular velocity θ̇.
An evolved minimal solution in the t-class uses only the output unit and per-
forms quite well on benchmark initial conditions (see [7]). One of the evolved
s-class controllers (not shown here), having comparable performance, uses a self-
excitatory and a self-inhibitory output unit and only five connections to the
inputs.

In the following we concentrate on evolved controllers using only reduced
information, i.e. they get only two input signals proportional to cart position x

and pole angle θ, respectively. In this situation recurrent connectivity has to be
expected, because the derivatives ẋ and θ̇ now have to be computed. Satisfying all
three objectives simultaneously - balancing, avoiding boundaries and centering
the cart - will be a more difficult problem in this case.

3.1 t-class solutions

Fig. 1. Three examples (w1, w
2, w

3) of evolved t-class neurocontrollers.

Fig. 2. a.) Initial conditions (black squares) for which the pole is balanced longer than
300 seconds by the controller (4), b.) cart position x, pole angle θ and applied force
F as functions of time starting with initial condition x = 2.0, θ = 0.16 for the same
controller.

Among many other and even larger networks the evolutionary algorithm
came up with the three architectures depicted in Fig. 1. Denoting weight vectors
of configuration k by wk

i
, with wk

i0 the bias term of unit i, the evolved controllers
are given by

w1 = (0.0, 1.52, 18.36,−0.86) ; (2)

w2 =





0.0 −0.76 11.6 −0.89 −1.02 0.0
0.0 −16.63 0.0 0.0 0.54 −9.88
0.0 −0.08 0.0 0.0 0.0 0.95



 , (3)

w3 =

(

0.0 0.0 2.11 −1.17 0.11
0.24 13.3 2.84 −7.62 0.0

)

. (4)

They all balance the pole longer than 300 seconds on a large (x, θ)-domain of
initial conditions with ẋ = θ̇ = 0. We tested all configurations on 40 x 40
benchmark initial conditions (x, θ, ẋ = θ̇ = 0.0) represented by squares as in
Figs. 2a and 4a. Outer squares represent initial conditions which already produce
a failure signal. A typical domain for successful control is given in Fig. 2a for the
controller (4) of Fig. 1c. All three controllers finally keep the cart-pool system
oscillating with a small amplitude around zero position and angle. We observed
also configurations which finally brought the cart and pole at rest in the zero
position, but they operated successfully only on smaller sets of initial conditions.

The simplest evolved t-class solution (Fig. 1a) uses only the output neuron,
but with an inhibitory self-connection. This simple control module (2) does bal-
ancing and wall avoiding for a large domain of initial conditions (compare [7]);
but it does not center the cart, i.e. the cart keeps oscillating around zero with an
apparently constant amplitude corresponding to its initial position. The second
solution (3) (Fig. 1b) is interesting because it represents two coupled modules:
Neurons 1,2 and 3 reproduce the balancing module of Fig. 1a which does not

center the cart; the module composed of neurons 1, 4 and 5 appears to be a
cart centering network, i.e. taken as a separate module acting on the cart with
a force given by the output of unit 4, it finally brings the cart into the central
position by damped oscillation; and this holds for any initial position on the
benchmark interval |x| < 2.4 [m]. Apparently, it uses a delay line for solving the
task and self-inhibition of units for smoothing the cart movement. With values
given by (3) it has an unusual way of solving the problem: it keeps the cart
oscillating with growing amplitude and, applying a short oscillatory force signal
at a certain point, starts again with a smaller amplitude. The third solution (4)
has two recurrent loops (one self-connection w33 and the loop (w34, w43). It uses
a switchable period two oscillator to stabilize the system occasionally. This can
be seen in Fig. 2b where cart position, pole angle and applied force are depicted
as functions of time.

3.2 s-class solutions

Fig. 3. Three examples (w4, w
5, w

6) of evolved s-class neurocontrollers.

The three neurocontrollers shown in Fig. 3 are examples of evolved “minimal”
configurations for the s-class. Again they solve the problem for a large domain
of initial conditions as shown for the controller (7) in Fig. 4a. With a successful
control the final state of the cart-pole system is again an oscillatory one, i.e. cart
and pole are oscillating with a small amplitude around zero, and the amplitude
is the same for all (tested) initial conditions. The configurations of Fig. 3 are
given by the following weights:

w4 =

(

0.0 23.34 38.58 0.0 2.69
2.98 0.92 11.92 6.72 0.0

)

; (5)

w5 =

(

−1.21 25.23 37.85 0.0 0.0
−3.29 0.0 −16.21 11.73 −6.45

)

; (6)

w6 =

(

−2.76 0.0 22.81 −9.79 14.3
−1.89 −15.5 −39.85 −10.71 11.01

)

. (7)

Fig. 4. a.) Initial conditions (black squares) for which the pole is balanced longer than
300 seconds by the controller (7), b.) cart position x, pole angle θ and applied force
F as functions of time starting with initial condition x = 2.0, θ = 0.16 for the same
controller.

Although the three controllers have almost the same benchmark performance,
they use different “techniques” to solve the problem. For instance controller
(6) finally stabilizes the system with a “periodic burst” of applied force, and
controller (7), which is the one with the best benchmark performance (see Fig.
4a), uses higher periods and even chaotic dynamics to stabilize the system in
a comparatively short time (around 40 seconds for extreme initial conditions,
compare Fig. 2b). In fact, the output units 3 and 4 form a “chaotic neuromodule”
[8], and simulations for this configuration show, that the controller really uses
also the chaotic domain of the module, i.e. for specific (stationary) control inputs
the dynamics of the output module is determined by a chaotic attractor.

4 Discussion

We have demonstrated that our evolutionary algorithm can be applied success-
fully to control problems like pole balancing. The evolved solutions are remark-
able small when compared with those obtained by classical control techniques
or pure feedforward networks. We also observe a strong effect of “survival condi-
tions” on the topology of evolved networks: If there is no condition to minimize
the applied force for balancing, solutions tend to use internal oscillators. We
have also observed solutions making use of periodic and even chaotic dynamics
to stabilize the system if it enters critical phase space domains. Furthermore, the
evolved controllers are quite robust in the sense, that a moderate noise on the
input signals did not effect their performance. The same architectures still oper-
ated effectively when changing the time discretization to ∆ = 0.01 or ∆ = 0.03,
or when adding conventional damping terms to the cart-pole system.

The algorithm still can be optimized. For instance, an appropriate learning
procedure may be placed between the variation and the evaluation phase of the

evolution cycle (1). Besides the first tests presented here, further simulations
on more difficult problems, like for instance balancing a rotator, indicate, that
the evolutionary algorithm may be effectively applied to many nonlinear control
problems.

References

1. Albrecht, R. F., Reeves, C. R., and Steele, N. C. (eds.), Artificial Neural Nets
and Genetic Algorithms, Proceedings of the International Conference in Innsbruck,
Austria, 1993, Springer, Wien 1993.

2. Anderson, C. W. (1989). Learning to control an inverted pendulum using neural
networks. IEEE Control Systems Magazine, 9, 31 - 37.

3. Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive
elements that solve difficult learning control problems. IEEE Transactions on Sys-
tems, Man, Cybernetics, 13, 834 - 846.

4. Bapi, R. S., D’Cruz, B., and Bugmann, G. (1996) Neuro-resistive grid approach to
trainable controllers: A pole balancing example, submitted to Neural Computing
and Applications.

5. Dasgupta, D., and McGregor, D. R. (1993). Evolving neurocontrollers for pole
balancing. In S. Gielen and B. Kappen (eds.), ICANN’93 Proceedings of the Inter-
national Conference on Artificial Neural Networks, Amsterdam 13.-16. Sept. 1993.
Berlin: Springer-Verlag, 1993, pp. 834-837.

6. Dieckmann, U. (1995), Coevolution as an autonomous learning strategy for neu-
romodules, in: Herrmann, H., Pöppel, E., and Wolf, D. (eds.), Supercomputing in
Brain Research - From Tomography to Neural Networks, Singapore: World Scien-
tific, (pp. 331–347).

7. Pasemann, F., Dieckmann, U. (1997). Evolved Neurocontrollers for pole-balancing.
In: Proceedings IWANN’97, Lanzarote, Spain, June 4-6, 1997, Lecture Notes in
Computer Science. Berlin: Springer-Verlag.

8. Pasemann , F., Nelle, E. (1993). Elements of non-convergent neurodynamics, in:
Andersson, S. I., Andersson, A.E., Ottoson, U.: Dynamical Systems - Theory and
Applications. Singapore: World Scientific.

9. Geva, S., and Sitte, J. (1993). A cartpole experiment benchmark for trainable
controllers, IEEE Control Systems Magazin, 13, 40-51.

10. Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992). Combination of genetic
algorithms and neural networks: A survey of the state of the art. In: Proceedings
International Workshop on combinations of genetic algorithms and neural networks
(COGANN-92), Los Alamitos, CA, IEEE Computer Society Press.

11. Yao, X. (1993). A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 8, 539 - 567.

