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Abstract

The parametrized time-discrete dynamics of two recurrently coupled
chaotic neurons is investigated. Basic dynamical features of this system
are demonstrated for symmetric couplings of identical neurons. Periodic
as well as chaotic orbits constrained to a manifold M of synchronized
states are observed. Parameter domains for locally stable synchroniza-
tion manifolds M are determined by numerical simulations. In addition
to the synchronized dynamics there often co-exist periodic, quasiperiodic
and even chaotic attractors representing different kinds of non-synchronous
coherent dynamics. Simulation results for selected sets of parameters are
presented, and synchronization conditions for systems with non-identical
neurons are derived. Also these more general systems inherit the above
mentioned dynamical properties.
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1 Introduction

In many recent articles the feasibility of synchronizing chaotic systems has been
investigated experimentally as well as theoretically [4], [7], [11], [12], [15], [17],
[23], [24], [26], [29], [31]. Interest in the construction of chaotic synchronized
dynamical systems has aroused mainly because of its potential for application in
secure communication [2], [5], [16], [18], [20]. Most of the work therefore inves-
tigates the coupling of time-continuous systems like Lorenz or Rössler systems,
or like Chua’s circuit. But also time discrete systems are considered [6]. Syn-
chronization in coupled systems can be achieved in different ways: by one-way
couplings as introduced in [23], or by recurrent couplings, where each of the sys-
tems effects the other [11]. In this paper we discuss the discrete-time dynamics of
two 1-dimensional chaotic systems coupled recurrently. The corresponding maps
are considered to represent a simple model of formal neurons [21].

We will use the term “synchronization” in the sense of complete synchroniza-
tion of chaotic systems; i.e. we consider systems, the states of which can coincide,
while the dynamics in time remains chaotic [27]. We may also discern between
global and local synchronization. Global synchronization means, that for almost
all initial conditions orbits of the systems will synchronize. By local synchro-
nization we refer to locally stable synchronized states; i.e. small perturbations
will not desynchronize the systems. We will also make use of the concept of a
synchronization manifold [11] to which a synchronized dynamics is constrained.

Besides the discussion of synchronized chaos in the context of technical ap-
plications, selective synchronization of neural activity in biological brains was
often suggested to be a fundamental temporal mechanism for binding spatially
distributed features into coherent objects. (cf. among many others [8], [9], [30]).
Motivated by these biological findings synchronization of chaos has been studied
in computer simulations for networks with spiking neurons, and in large net-
works of Hindmarsh-Rose neurons [3], [10], [25]. With respect to discrete-time
dynamics conditions for synchronized chaos were discussed also for large networks
consisting of coupled pools of analog neurons [32].

On this background we were interested in the discrete dynamics of two coupled
chaotic neuromodules that exhibit complete synchronization. Simulation results
for synchronization and other coherent states in coupled chaotic modules of two
coupled chaotic standard analog neurons were presented in [22]. But here we
show that already for a system composed of two interacting chaotic neurons – i.e.
standard neurons with a damping term [21] – we observe global as well as local
synchronization of chaotic dynamics. Interesting parameters are the stationary
inputs to neurons as well as the strength of the recurrent couplings. The corre-
sponding dynamics is analyzed in section 3 for the case of symmetrically coupled
identical neurons. Numerical simulations reveal that for large parameter domains
various non-synchronous periodic, quasiperiodic or even chaotic attractors may
co-exist with a synchronized dynamics. Orbits in the synchronization manifold
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may be locally stable or unstable. The instability of synchronized chaotic orbits
is signaled by two positive Lyapunov exponents indicating hyperchaos [14], [28].
Hyperchaos as a signal for the transition from synchronized to non-synchronized
states in the chaotic regime was also observed in [6].

Most of these dynamical phenomena are also found for the more general case
of recurrently coupled non-identical chaotic neurons. Conditions on the coupling
strength are derived for the existence of synchronized dynamics in this case, and
in section 4 corresponding simulation results are shortly discussed.

2 Two coupled chaotic neurons

The simplest example of two coupled neuromodules is the case where each module
consists only of one single neuron. The parametrized discrete activity dynamics of
a single chaotic neuron is given by the 1-dimensional map (1), which is bimodal
for a large class of parameter values, and thus has parameter domains where
chaotic attractors exist [21]. Therefore, synchronized chaotic dynamics for specific
recurrent couplings of two “chaotic” neurons, A and B say, has to be expected.
This is the situation we analyze in the following.

The discrete activity dynamics of a single chaotic neuron A is given by

a(t + 1) = θA + γA · a(t) + wA · σ(a(t)) , , a ∈ R , 0 ≤ γ < 1 , (1)

and for unit B with activity b correspondingly. Here γA denotes the damping
term, wA the self-coupling of neuron A; θA := (θA

0 + IA) describes the sum of
a fixed bias term θA

0 of A and its stationary external input IA. The output
oA = σ(a) is given by the sigmoidal transfer function

σ(a) :=
1

1 + e−a
. (2)

By ρA := (γA, θA, wA) we denote the set of parameters for the single unit
dynamics.

If we couple the neurons by connections wAB and wBA, respectively, and
denote the set of parameters for the coupled system by ρ := (ρA, ρB, wAB, wBA)
the corresponding dynamics Fρ : R2 → R2 reads

a(t + 1) = θA + γA · a(t) + wA · σ(a(t)) + wAB · σ(b(t)) ,

b(t + 1) = θB + γB · b(t) + wB · σ(b(t)) + wBA · σ(a(t)) . (3)

In the following we are interested especially in the process of complete synchro-
nization of neurons, which in this case means that there exists a subset D ⊂ R2

such that (a0, b0) ∈ D implies

lim
t→∞

| a(t; a0) − b(t; b0) | = 0 ,
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where (a(t; a0), b(t; b0)) denotes the orbit under Fρ through the initial condition
(a0, b0). The synchronization is called global if D ≡ R2, and local if D ⊂ R2 is
a proper subset. Thus, a synchronized state s of the coupled system is defined
by s := a = b. Correspondingly, a state ŝ satisfying ŝ = a = −b is called anti-
synchronized. Here, the synchronization manifold M := {(s, s) ∈ R2 | s = a = b}
of synchronized states corresponds to a 1-dimensional hyperplane M ∼= R ⊂ R2.
We introduce coordinates parallel and orthogonal to the synchronization manifold
M [11] as follows:

ξ :=
1√
2
(a + b) , η :=

1√
2
(a − b) . (4)

But setting a − b = 0 we can immediately read from equation (3) the following

Lemma 1 Let the parameter sets ρA, ρB of the units A and B satisfy

γ = γA = γB , θ = θA = θB , (wA − wBA) = (wB − wAB) . (5)

Then every orbit of F̃ρ through a synchronized state s ∈ M is constrained to M
for all times.

Especially, lemma 1 applies to the case of identical neurons with symmetric cou-
plings, i.e. to a ρ = (γ, θ, w, wcoup) with

γ = γA = γB , θ = θA = θB , w = wA = wB , wcoup = wBA = wAB . (6)

We will consider the special parameter setting (6) first.

3 Coupling two identical neurons

Let ρ = (γ, θ, w, wcoup) denote a parameter set (6) of two coupled identical neu-
rons. We will fix the damping term γ = 0.6 and the self-connection w = −16.0
so that the chaotic domain for the single neuron can be reached [21]. Changing
now to (ξ, η)-coordinates given by (4) and setting

w+ := (w + wcoup) , w− := (w − wcoup) , (7)

we obtain the dynamics F̃ρ of two coupled identical neurons as

ξ(t + 1) = γ · ξ(t) +
√

2 · θ +
w+

√
2
· G+(ξ(t), η(t)) ,

η(t + 1) = γ · η(t) +
w−
√

2
· G−(ξ(t), η(t)) , (8)
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where the functions G+, G− : R2 → R are defined by

G+(ξ, η) := σ(
1√
2
(ξ + η) + σ(

1√
2
(ξ − η)) ,

G−(ξ, η) := σ(
1√
2
(ξ + η) − σ(

1√
2
(ξ − η)) . (9)

According to lemma 1 every orbit of F̃ρ through a synchronized state (ξ, 0) ∈
M is constrained to M for all times. With s := 1/

√
2 ξ, the corresponding

synchronized 1-dimensional dynamics F s
ρ in M is described by the equation

s(t + 1) = θ + γ · s(t) + w+ · σ(s(t)) . (10)

Thus, the synchronized dynamics F s
ρ comprises the whole spectrum of dynamical

behavior of a single isolated chaotic neuron [21] with self-connection w+; i.e. it
may have fixed point attractors as well as periodic or chaotic ones. Although
the persistence of synchronized dynamics for identical neurons is guaranteed by
condition (6), it is not at all clear that the synchronization manifold M is itself
asymptotically stable with respect to the dynamics F̃ρ. Thus, an F̃ρ-invariant set
A ⊂ M may be an attractor for the synchronized dynamics F s

ρ but not for the

dynamics F̃ρ of the coupled system. The simulation results in the next section will
give a first idea about the dynamical complexity of this “trivial” neural system.

But first let us introduce the point-reflection operator Sη acting only on the
η-coordinates of the (ξ, η)-phase space, i.e.

Sη(ξ, η) = (ξ,−η) .

The functions G+ and G− defined in (9) have the property

G+ Sη(ξ, η) = G+(ξ, η) , G− Sη(ξ, η) = −G−(ξ, η) .

Thus the dynamics F̃ρ : R2 → R2 given by equation (8) is equivariant under the
action of Sη; i.e.

F̃ρ (ξ, η) = (Sη)−1 F̃ρ Sη(ξ, η) .

As a consequence of this equivariance property we obtain the following

Lemma 2 Let F̃ρ denote the dynamics (8) of two coupled identical neurons, and
let F p

ρ denote its p-fold iterate. For a point (ξ, η) ∈ R2 we then have

(ξ, η) = F̃ p
ρ (ξ, η) ⇐⇒ (ξ,−η) = F̃ p

ρ (ξ,−η) .

The fact that with (ξ, η) also (ξ,−η) must be a p-periodic point does of course
not include that both points belong to the same p-periodic orbit. An example
can be found for ρ = (0.6, 3.75,−16.0, 2.0), where two period-7 attractors are
interwoven. As a trivial consequence of lemma 2 we have
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Corollary 1 Let F̃ρ denote the dynamics of two coupled identical neurons. If
(ξ, η) and (ξ,−η) belong to the same period-p orbit of F̃ρ then p = 2q, and
(ξ,−η) = F̃ q

ρ (ξ, η).

For the description of attractors observed for the dynamics of coupled chaotic
neurons we will use the following definition: A quasiperiodic or chaotic attractor
is called p-cyclic if it has p connected components which are permuted cyclically
by the map F̃ρ. Every component of a p-cyclic attractor is an attractor of F̃ p

ρ .

To discuss the qualitative aspects of the dynamics F̃ρ for the identical coupled
chaotic neurons we make use of the following Lyapunov exponents. Exponents
(λ1, λ2) are derived from the linearization of Fρ (3); i.e. from

DFρ(a(t), b(t)) =
(

γ + w · σ′(a(t)) wcoupσ′(b(t))
wcoupσ′(a(t)) γ + w · σ′(b(t))

)

. (11)

For the synchronized dynamics the synchronization exponent λs and the transver-
sal exponent λ⊥ are derived from the linearization of F̃ρ (8) around synchronized
states s(t) = 1√

2
· ξ(t). With

DF̃ρ(s) =
(

ǫs(s) 0
0 ǫ⊥(s)

)

:=
(

γ + w+ · σ′(s) 0
0 γ + w− · σ′(s)

)

(12)

we have

λs = lim
n→∞

1

n

n
∑

t=1

ln | ǫs(s(t))| , λ⊥ = lim
n→∞

1

n

n
∑

t=1

ln | ǫ⊥(s(t))| . (13)

3.1 Results from numerical simulations

To get an idea about what kind of synchronized dynamics does exist for coupled
neurons and for what parameter values it is locally stable or unstable we discuss
results presented in figures 1 and 2. In figure 1 the Lyapunov exponents λs and
λ⊥ are displayed in dependence of the coupling strength wcoup for γ = 0.6, w =
−16, and θ = 4.0. The corresponding bifurcation diagram for the synchronized
dynamics F s

ρ given by equation (10) is also shown. We observe a standard period-
doubling route to chaos, and for a large domain of coupling strengths, i.e. −5.74 <
wcoup < 1.89, there exist chaotic orbits in the synchronization manifold M .

Furthermore, for wcoup < 0 there is a domain where both Lyapunov exponents
λs, λ⊥ are positive. This hyperchaotic domain signals of course the instability
of synchronized states. Reading from the data underlying figure 1 hyperchaos
appears in the interval −3.51 < wcoup < 0; i.e. for couplings from this interval
there exist no locally stable synchronized chaotic orbits. In fact, as is shown
in figure 4 for wcoup = −3, the attractors of the coupled system are not con-
strained to the synchronization manifold M . But there is also a coupling domain
−5.74 < wcoup < −3.51 where we have a (locally) stable synchronized chaotic
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Figure 1: Bifurcation diagram for the synchronized dynamics s(t) with respect
to parameter wcoup; other parameters are γ = 0.6, w = −16, and θ = 4. Below
synchronization (λs) and transversal (λ⊥) Lyapunov exponents are plotted for
the same wcoup-interval. A positive λs indicates a synchronized chaotic attractor,
a positive λ⊥ indicates an unstable synchronization manifold M .
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Figure 2: Bifurcation diagram for the synchronized dynamics s(t) with respect to
parameter θ; other parameters are γ = 0.6, w = −16, and wcoup = −3.0. Below
synchronization (λs) and transversal (λ⊥) Lyapunov exponents are plotted for
the same θ-interval. A positive λs indicates a synchronized chaotic attractor, a
positive λ⊥ indicates an unstable synchronization manifold M .

8



dynamics; i.e. where λs > 0 and λ⊥ < 0. In general, these chaotic attractors con-
strained to M co-exist with other periodic or quasiperiodic attractors arranged
symmetrically around M . An example of this dynamic configuration is presented
in figure 3 where a synchronized chaotic attractor co-exists with a period-2 and a
period-4 attractor. Outside the interval −22.6 < wcoup < −5.74 we find only glob-
ally stable synchronized periodic and chaotic attractors. For wcoup < −22.6 the
synchronization manifold M becomes unstable again and the dynamic situation
is characterized by two or more (chaotic) attractors again arrange symmetrically
to M .

Also for positive couplings hyperchaos is observed. This is the case, for in-
stance, in the interval 0 < wcoup < 0.90. But here the transversal exponent λ⊥

is larger then the synchronization exponent λs. Again, there is no locally stable
synchronized dynamics for these values of wcoup. Typically, there exists a lo-
cal hyperchaotic attractor traversing the unstable synchronization manifold M ;
figure 7 shows a characteristic situation. Again, these chaotic attractors often
co-exist with periodic, quasiperiodic or other chaotic attractors. For 0.9 < wcoup

we observe intervals, i.e. 1.03 < wcoup < 1.89 and 2.66 < wcoup < 4.29, where
λ⊥ > 0 although λs < 0. This indicates the instability of the synchronization
manifold M and of the periodic orbits constrained to it. Figure 8 displays the
situation shortly after the synchronized period-4 orbit became locally stable. For
4.29 < wcoup < 6.24 a locally stable synchronized period-2 attractor co-exists with
an anti-synchronized one. The latter survives in the interval 6.24 < wcoup < 13.37
as a global attractor (unstable M !) “jumping” to a synchronized global fixed
point attractor after crossing a hysteresis interval 12.91 < wcoup < 13.37.

Figure 2 displays the bifurcation diagram for the synchronized dynamics s(t)
with respect to the parameter θ; fixed parameters are γ = 0.6, w = −16, and
wcoup = −3.0. The synchronized dynamics again follows period doubling bifur-
cations to chaos. For the same θ-range the Lyapunov exponents λs and λ⊥ are
displayed in figure 2. The data underlying this figure reveal that synchronized
chaotic orbits (λs > 0) exist in the interval 2.33 < θ < 5.8. Included in this inter-
val is a hyperchaotic θ-domain where in addition to λs > 0 also the transversal
exponent λ⊥ is positive; this interval is given by 2.74 < θ < 5.05. For θ outside
of this interval the synchronization manifold M together with the periodic orbits
constrained to M will be (locally) stable.

From the figures 1 and 2 we can deduce that for inhibitory couplings wcoup < 0
and positive synchronization exponents λs > 0 we have λ⊥ < λs. From the
defining equations (13) this can be seen as follows: With w < wcoup < 0 for the
eigenvalues ǫs and ǫ⊥ we have

γ − |w| + |wcoup|
4

< ǫs(s) < γ , γ − |w| − |wcoup|
4

< ǫ⊥(s) < γ , s ∈ R .

Because σ′(0) = 0.25, the left hand side of the inequalities correspond to ǫs(0)
and ǫ⊥(0). Therefore, states s(t) on a synchronized chaotic orbit (λs > 0) must
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visit the vicinity of the origin very often; i.e. for these states |ǫs(s)| > 1, or,
deduced from the above inequalities, ǫs(s) < −1. But we have ǫ⊥(s) = ǫs(s) + 2 ·
|wcoup|σ′(s) < γ < 1 so that |ǫ⊥(s)| < |ǫs(s)| for states s satisfying σ′(s) < (1+γ)

| w+ | .

But we then have: If λs > 0 then λ⊥ < λs. A corresponding argument holds for
excitatory couplings wcoup > 0: If λ⊥ > 0 then λs < λ⊥.

Finally we want to point out that outside of the synchronization manifold
M we can observe bifurcation sequences to chaos which do not follow the usual
period-doubling route. Reading in the direction of decreasing θ-values, here chaos
appears after a transition from period-4 attractors to quasiperiodic attractors to
chaotic ones to hyperchaotic ones. This type of sequence can be observed, for
instance, for parameters γ = 0.6, w = −16, wcoup = −2.0 in the interval 4.2 <
θ < 4.7. The whole scenario resembles the one called chaotic contact bifurcation
(CCB) in [1]. Since M is unstable in this region, these 4-cyclic attractors are
symmetric to M .

With respect to the dynamics F̃ρ given by equation (3), in the following we
will describe the dynamical situation displayed in figures 3 to 8. They correspond
to the six parameter sets listed in table 1.

Corresponding to Lemma 2, for ρ1 we observe one period-2 and one period-4
attractor arranged symmetrically around the synchronization manifold M . They
co-exist with a chaotic attractor (λs = 0.35, λ⊥ = −0.07) constrained to M .
Here λ⊥ < 0 indicates that the synchronization manifold M is stable (compare
figure 3 and table 1).

For ρ2 we observe one period-2, one period-6 and one 4-cyclic quasiperiodic at-
tractor lying outside the synchronization manifold M . But there is also a chaotic
orbit C constrained to the synchronization manifold M (compare figure 4 and
table 1). M is unstable in this case as can be read from Lyapunov exponents
λs = 0.36 and λ⊥ = 0.05 which are both positive (compare table 1). Neverthe-
less, the orbit C serves as a chaotic attractor for the corresponding synchronized
dynamics F s

ρ constrained to M .
The synchronization manifold M is unstable also for the parameter set ρ3

(compare figure 5 and table 1). It contains again a chaotic orbit C (λs =
0.32, λ⊥ = 0.008), which is of course unstable with respect Fρ, but serves as
a chaotic attractor for the corresponding synchronized dynamics F s

ρ . Outside of
M we find a period-4 attractor and a second (2-cyclic) chaotic attractor both
arranged symmetrically around M .

There exists a global hyperchaotic attractor for parameter set ρ4 traversing the
unstable synchronization manifold M . Lyapunov exponents are λs = 0.149, λ⊥ =
0.039 (compare figure 6 and table 1).

Parameter set ρ5 (compare figure 7 and table 1) demonstrates the instability
of the synchronization manifold M for positive couplings wcoup > 0. There is
a hyperchaotic attractor traversing M (λs = 0.13, λ⊥ = 0.047). A second co-
existing 2-cyclic chaotic attractor is found outside of M .
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attractor sync.? init.cond. (a,b) λ1 λ2 λs λ⊥

ρ1 : γ = 0.6, θ = 4.8, w = −16.0, wcoup = −4.0

period-2 no (-3.7,0.1) -0.116 -0.116 x x
period-4 no (-2.804, 0.243) -0.083 -0.402 x x
chaotic yes (-1.0, -1.0) x x 0.353 -0.074

ρ2 : γ = 0.6, θ = 4.0, w = −16.0, wcoup = −3.0

period-2 no (-3.808, -0.076) -0.036 -0.036 x x
period-6 no (-2.804, 0.243) -0.297 -0.297 x x

quasiperiodic no (-1.263, 1.129) 0.0000 -0.089 x x
hyperchaotic yes (1.0, 1.0) x x 0.363 0.056

ρ3 : γ = 0.6, θ = 4.47, w = −16.0, wcoup = −3.0

period-4 no (-9.0, -2.75) -0.17 -0.17 x x
chaotic no (-5.95, -0.25) 0.108 -0.088 x x

hyperchaotic yes (-1.0,-1.0) x x 0.322 0.008

ρ4 : γ = 0.6, θ = 4.0, w = −16.0, wcoup = −2.0

hyperchaotic no (-0.1, 0.1) 0.149 0.039 x x

ρ5 : γ = 0.6, θ = 3.675, w = −16.0, wcoup = 2.0

chaotic no (-2.044, -6.526) 0.119 -0.005 x x
hyperchaotic no (0.577, -8.691) 0.13 0.047 x x

ρ6 : γ = 0.6, θ = 4.0, w = −16.0, wcoup = 2.0

period-4 yes (1.537, 1.537) x x -1.426 -0.065
quasi no (0.281, -9.365) 0.000 -0.655 x x

hyperchaotic no (-6.9, -3.3) 0.084 0.002 x x

Table 1: Lyapunov exponents for attractors co-existing in a system of two coupled
chaotic neurons with parameter sets ρ1 – ρ6; compare figures 3 – 8.

Finally, also for positive couplings wcoup > 0, figure 7 shows a synchronized
period-4 attractor in the stable manifold M together with a co-existing 2-cyclic
quasiperiodic and a 4-cyclic chaotic attractor (compare table 1).
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Figure 3: A period-2 (white crosses) and a period-4 attractor (black dots) co-
existing with a chaotic attractor in the stable synchronization manifold M to-
gether with their basins of attraction (white: chaotic, black: period-2, and gray:
period-4 attractor). Parameters: γ = 0.6, θ = 4.8, w = −16.0, wcoup = −4.0.

Figure 4: A period-2 (white crosses), a period-6 (black dots) and 4-cyclic
quasiperiodic attractor co-existing with a chaotic orbit in the unstable manifold
M together with their basins of attraction (white: period-6, black: period-2, and
gray: quasiperiodic). Parameters: γ = 0.6, θ = 4.0, w = −16.0, wcoup = −3.0.
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Figure 5: A period-4 (black dots) and a 2-cyclic chaotic attractor co-existing
with a chaotic orbit in the unstable manifold M together with their basins of
attraction (white: chaotic, and gray: period-4 attractor. Parameters: γ = 0.6,
θ = 4.47, w = −16.0, wcoup = −3.0.

Figure 6: A global hyperchaotic attractor traversing the unstable synchronization
manifold M . Parameters : γ = 0.6, θ = 4.0, w = −16.0, wcoup = −2.0.
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Figure 7: Two co-existing 2-cyclic chaotic attractors (black and gray). The
hyperchaotic attractor (black) traverses the unstable synchronization manifold
M . Parameters: γ = 0.6, θ = 3.675, w = −16.0, wcoup = 2.0.

Figure 8: A 2-cyclic quasiperiodic and a 4-cyclic chaotic attractor co-existing with
a period-4 orbit in the locally stable synchronization manifold M for parameters
γ = 0.6, θ = 4.0, w = −16.0, wcoup = 2.0.
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4 Coupling two non-identical neurons

According to Lemma 1 there exists also a synchronized dynamics for coupled non-
identical neurons satisfying condition (5). For instance, keeping wA and wBA fixed
and adjusting wB and wAB such that they satisfy condition (5) will give again
periodic and chaotic dynamics constrained to the synchronization manifold M as
can be demonstrated by numerical simulations. As observed for the case of iden-
tical neurons with symmetric couplings, there are parameter domains for which
M is locally (or even globally) stable, others where the synchronized dynamics
is unstable. Cyclic attractors not constrained to M now are of course no longer
symmetric to M . Figure 9 displays a bifurcation sequence for the parameter p
with wB = p, wAB = p − wA + wBA and fixed parameters γ = 0.6, wA = −16,
wBA = −4, and θ = 3. The whole period-doubling sequence to chaos is contained
in M , and the corresponding synchronized dynamics is apparently globally stable
over the whole p-interval. For other values of θ this is in general not the case.

Figure 9: Bifurcation diagram for two coupled non-identical neurons satisfying
condition (5). Varied with parameter p are wB = p, wAB = p − wA + wBA; fixed
parameters are γ = 0.6, wA = −16, wBA = −4 and θ = 3.

So far synchronized units had identical bias terms (stationary inputs) θ. But,
using the symmetry σ(−x) = (1 − σ(x)) of the sigmoide (2), it is easy to prove
that (anti-) synchronization of chaotic dynamics can also appear if neurons have
different bias terms θ. To give a topologically equivalent dynamics, with respect to
coordinate transformations (a, b) → (ã, b̃) = (−a, b), (a,−b), (−a,−b) bias terms
of the units and coupling weights have to be changed in a way described below.
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Let the parameters of the coupled system of neurons - satisfying γ = γA = γB -
be given in matrix form as

ρ =
(

θA wA wAB

θB wB wBA

)

.

We then have the following

Lemma 3 Consider two chaotic neurons with γ = γA = γB. The dynamics Fρ

of the coupled neurons (3) with respect to the parameter set

ρ =
(

θ wA wAB

θ wB wBA

)

.

is topologically equivalent to the dynamics Fρ̃i
with respect to the parameter sets

ρ̃1 =
(

θ̃A = −θ − wA w̃A = wA w̃AB = −wAB

θ̃B = θ + wBA w̃B = wB w̃BA = −wBA

)

,

ρ̃2 =
(

θ̃A = θ + wAB w̃A = wA w̃AB = −wAB

θ̃B = −θ − wB w̃B = wB w̃BA = −wBA

)

,

ρ̃3 =
(

θ̃A = −θ − (wA + wAB) w̃A = wA w̃AB = wAB

θ̃B = −θ − (wB + wBA) w̃B = wB w̃BA = wBA

)

.

Now, suppose parameters ρ satisfy condition (5) of Lemma 1, so that the
dynamics Fρ allows for a synchronized dynamics constrained to M ; i.e. w− :=
wA − wBA = wB − wAB and w+ := wA + wAB = wB + wBA. It is obvious, that
the synchronous dynamics Fρ̃3

with respect to parameters ρ̃3 corresponds again
to identical neuron input/bias terms, and it is obtained by the reflection s̃ = −s
of the coordinate in M . On the other hand, with respect to parameter sets ρ̃1

and ρ̃2 the synchronized dynamics in the new (ã, b̃)-coordinates corresponds to
an anti-synchronized dynamics in the old (a, b) coordinates. We observe that this
kind of dynamics is obtained by reversing the coupling strength and changing
the bias terms (stationary inputs) correspondingly. For these two cases the bias
terms are now no longer identical.

5 Conclusions

In this work it has been shown that in a system of two coupled formal neurons
synchronized periodic and chaotic orbits can exist. Depending on parameters,
synchronized orbits can be globally stable, locally stable, or unstable. For locally
stable synchronized dynamics there do often co-exist periodic, quasiperiodic or
even chaotic attractors which correspond to a non-synchronous (but coherent)
dynamics. Thus, whether a system ends up in a synchronous behavior asymptot-
ically or not depends crucially on the initial conditions, i.e. on the internal state
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of the system, and not only on the external inputs. In this sense the reaction to
external signals therefore depends also on the history of the system. This may
be related to findings in more biological systems, where there is only a partial
synchronization of neurons, even though they share common connections and a
common driving signal [3].

Finally we want to point out that the special kind of formal neuron used
here may serve as a basic element in larger arrays of coupled neurons. Like in
coupled map lattices [13], [19] this type of neural network will show a variety
of different dynamical features like partial synchronization, clustering effects and
traveling waves of activity. Analysis of these phenomena may help to under-
stand comparable features of biological brains or to setup complex systems with
higher information processing capabilities than, for instance, convergent neural
networks.
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