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Abstract

Synchronization of neural signals has been proposed as a temporal cod-
ing scheme representing cooperated computation in distributed cortical
networks. Previous theoretical studies in that direction mainly focused on
the synchronization of coupled oscillatory subsystems and neglected more
complex dynamical modes, that already exist on the single-unit level. In
the present work we study the parameterized time-discrete dynamics of
two coupled recurrent networks of graded neurons. Conditions for the ex-
istence of partially synchronized dynamics of these systems are derived,
referring to a situation where only subsets of neurons in each sub-network
are synchronous. The coupled networks can have different architectures
and even a different number of neurons. Periodic as well as quasiperi-
odic and chaotic attractors constrained to a manifold M of synchronized
components are observed. Examples are discussed for coupled 3-neuron
networks having different architectures, and for coupled 2-neuron and 3-
neuron networks. Partial synchronization of different degrees is demon-
strated by numerical results for selected sets of parameters. In conclusion,
the results show that synchronization phenomena far beyond completely
synchronized oscillations can occur even in simple coupled networks. The
type of the synchronization depends in an intricate way on stimuli, history
and connectivity as well as other parameters of the network. Specific in-
puts can further switch between different operational modes in a complex
way, suggesting a similarly rich spatio-temporal behavior in real neural
systems.

∗appeared in: Network: Computation in Neural Systems, 11, 41–61 (2000).
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1 Introduction

Synchronization of neural activity in biological brains has been observed in dif-
ferent species, areas and under various physiological conditions (cf. [7, 14, 20,
29, 32, 44, 45]. Most attention was given to the experimental evidence that
coherent firing of spatially separate neurons appears as a response to specific
external stimuli, in particular in response to extended object borders that may
cover more than the classical receptive fields of the stimulated cells. The observa-
tion of synchrony between firing activity at distant sites along continuous edges
lead to the famous “binding hypothesis” which states that the synchronization of
neural activity serves as a fundamental temporal mechanism for binding spatially
distributed features into a coherent object representation (cf. e.g. [14, 15, 44]).
In this context conceptual discussions and biologically motivated models were
mainly based on the synchronization of oscillatory dynamics in high-dimensional
systems (cf. e.g. [9, 17, 22, 38, 39, 51, 56], and reviews in [18, 53]).

Interestingly, although a matter of intensive research for the last 10 years
there is still no common agreement about the precise origin of cortical gamma-
oscillations. Several alternatives have been proposed:

1. Many theoretical studies assume that collective oscillations arise from cou-
pled networks of intrinsically periodically firing excitatory cells that mutu-
ally align their spikes in time (reviews in [18, 53]). Inhibitory interneurons
in this interpretation mainly regulate the firing frequency or are neglected
at all.

2. In strong contrast Buzsàki and Chrobak [7, 51] suggested that the oscilla-
tions arise from networks of inhibitory cells that synchronize by themselves
and co-operatively entrain large populations of principal/pyramidal cells.
Individual principal cells in their scenario may fire at low rates and non-
rhythmic. Their firing times, however, are correlated with the membrane
oscillations induced by the inhibitory subnetwork.

3. A third alternative is that gamma-oscillations are not characterized by mu-
tually synchronizing ensembles of already periodically firing individual cells
(either excitatory or inhibitory), but that the rhythm is a collective effect
due to mass action between two pools of excitatory and inhibitory cells
[45, 54, 56]. Cells in both pools can reveal broad firing frequency distribu-
tions and only weak spike synchrony [54].

4. In addition, although it is commonly believed that gamma-oscillations are
cortex-intrinsically generated and synchronized by lateral or cortico-cortical
fibres, some authors suggested that synchrony (either oscillatory or non-
oscillatory) may at least in part be input driven [19].
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Since there is experimental evidence for all these alternatives it is likely
that different mechanisms participate in the generation and synchronization of
gamma-oscillations in different brain structures, areas or even within the same
area.

Most interestingly in the context of the present paper is, that the different al-
ternatives can and have all been simulated in computational neural network stud-
ies employing an architecture of internally as well as mutually connected pools of
excitatory and inhibitory neurons (e.g. [17, 18, 28, 46, 51, 53, 54, 56]). Although
the cited simulation studies are not perfectly comparable in their modeling details
and physiological realism they nonetheless show that in such excitatory-inhibitory
networks case 1 above corresponds to neglectable inhibition [11, 18]. In contrast,
case 2 occurs if interneurons inhibit themselves sufficiently strongly and excitation
is relatively weak or missing at all (e.g. [46, 51]). Case 3 requires approximately
balanced excitation and inhibition above some critical level and a certain amount
of disorder in the network, say, in form of randomly chosen synaptic weights or
strong temporal input noise [54, 56]. Of course, also stimulus locked input driven
correlations (case 4) can be induced in such networks (see e.g. [28]).

This means: depending on the parameters chosen, essentially the same net-
work can reveal completely different dynamics; either the excitatory subnetwork
synchronizes, or the inhibitory one, or both interact and lead to mass oscillations.
In response to appropriate (i.e. correlated) input the level of synchronization
within the network may further depend more on the input drive or the recurrent
feedback.

Previous research on cortical synchronization phenomena of this kind has
focused almost exclusively on coupled oscillatory systems. Only a few model
studies consider synchronization of coupled systems in other dynamical modes,
for example, stationary stochastic firing states or chaotic dynamics [23, 28, 48].

Furthermore, many studies seem to be guided by the idea of what we call
“complete synchronization”, i.e. they attempt a collectively synchronized dynam-
ical state, where all cells in the network fire synchronously in every oscillation
period. The physiological unrealism of this “tight-binding” situation (cf. [53]) is
sometimes in part counteracted by introducing noise into the system. This lets
simulated observables (membrane potentials, spike trains, correlation functions,
etc.) look more like their real physiological counterparts, but it does not change
the principal concept of tightly synchronized oscillations.

On the other hand it is known, that already single neurons due to a variety
of intrinsical non-linearities can reveal complex dynamics in response to current
injection or various transmitter substances [21, 24, 39]. Evidence for chaotic
dynamics has also been found on the network level, expressed, for instance, in
mass signals like local field potentials or the EEG [13, 45].

The coupling of strongly nonlinear chaotic subsystems, however, has only been
addressed in neurobiological contexts in a few example studies [23, 45]. Complete
synchronization as for coupled oscillations has been demonstrated in chaotic sys-
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tems [43, 36, 37], but a multitude of further interesting dynamical phenomena
seems to exist, including weaker forms of “partial” or “generalized” synchroniza-
tion (for definitions see section 2), hysteresis between co-existing chaotic and
nonchaotic attractors, hyperchaos, and more (e.g. [12, 25, 40]).

Hence, it seems that in restricting attention to tightly coupled oscillations
only, brain theory appears unaware of the rich phenomenology of coupled nonlin-
ear subsystems. The following investigations therefore may serve as an inspiration
for the modelling of various computational and cognitive processes. Following a
modular approach to neural systems [33], we ask, how the synchronized activity
of subsets of module neurons depends on the module interactions as well as on
the module inputs.

On this background we study the parameterized time-discrete dynamics of two
coupled neural networks with recurrent connectivity. These small subsystems -
called neuromodules because they are considered as basic building blocks for
larger neural networks - are described as low-dimensional dynamical systems
with nonlinearities introduced by the sigmoidal transfer functions of standard
additive neurons. As parameters we will consider bias terms and/or stationary
inputs, the synaptic weights between module neurons, and the coupling strength
between neurons of different modules.

Outline of the paper is as follows: The next section sets up the formalism
for coupled neuromodules and gives definitions for their partial as well as for
their generalized synchronization. Complete synchronization is of course a spe-
cial case of partial synchronization. Definitions allow to describe the behavior of
coupled identical as well as non-identical systems, which can even be composed of
subsystems having different internal connectivity structures and dimensionality.
General conditions for the existence of partially synchronized dynamics of cou-
pled neuromodules are derived. These conditions show that asymmetric recurrent
coupling of modules, which have different numbers of neurons or different archi-
tectures, can ”compensate” these differences to achieve partial synchronization
even between different coupled subsystems.

The partially synchronized dynamics of two modules can be stable or unstable,
where stability is understood in the sense that small perturbations of synchro-
nized states will not desynchronize the system. Analytical treatments of stable
synchronization often use linear (diffusive) coupling schemes (e.g. [30]); but in the
neural network context we canonically have to deal with the nonlinear coupling
of subsystems. This makes analytical statements about the stability conditions
for the synchronous dynamics much more difficult to achieve. We will discuss sta-
bility properties of a synchronous dynamics along well established lines [4, 49]:
A manifold of synchronized components M is introduced together with its syn-
chronization and transversal Lyapunov exponents. Partially synchronized chaos
will be characterized by at least one positive synchronization exponent; unstable
synchronized dynamics by at least one positive transversal exponent. Thus, un-
stable partially synchronized chaos will always be associated with hyperchaotic

4



systems, i.e. with systems having at least two positive Lyapunov exponents [42].
In sections 3 and 4 we present numerical examples for the different kinds of

synchronization. First we couple a 3-neuron ring network with a bi-directional
chain of three neurons. The dynamical features of the isolated systems are quite
different – besides fixed point attractors 3-rings can have period-2, -3 and period-
6 attractors [34], whereas 3-chains can have p-periodic attractors for all p, and
quasi-periodic and chaotic attractors as well [33]. For this coupled system partial
synchronization of degree 1 (only two neurons are synchronized) and of degree 2
(only two pairs of neurons are synchronized), as well as generalized synchronous
dynamics are demonstrated. Complete synchronization for this setup was re-
ported in [37]. Section 4 presents the dynamics of a chaotic 2-neuron module
coupled to a bi-directional chain of three neurons. The 2-neuron module can
be understood in terms of the Wilson-Cowan model of excitatory and inhibitory
neuron interaction [55], and its dynamical behavior is well known for large pa-
rameter domains [5, 8, 33, 50]. Example dynamics for coupling schemes leading
to stable as well as unstable partial synchronization of degree 1 and 2 are given
for this case.

Section 5 gives a summary of results and a general discussion of synchroniza-
tion effects in neural networks.

2 Coupled neuromodules

We are considering neuromodules as discrete parameterized dynamical systems
on an n-dimensional activity phase space Rn given by the map

ai(t + 1) = θi +
n∑

j=1

wij σ(aj(t)) , i = 1, . . . , n , (1)

where ai ∈ Rn denotes the activity of the i-th neuron, and θi = θi + Ii denotes
the sum of its fixed bias term θi and its stationary external input Ii, respectively.
The output oi = σ(ai) of a unit is given by the sigmoidal transfer function
σ(a) := (1 + e−a)−1, a ∈ R, and wij denotes the synaptic weight from unit j to
unit i. A neuromodule having a parameter set ρ = (θ, w) for which the dynamics
(1) has at least one chaotic attractor will be called a chaotic neuromodule.

Suppose A and B denote two neuromodules having n and m neurons, respec-
tively. Correspondingly, their architectures will be described by an (n×n)-matrix
wA and by an (m×m)-matrix wB. Connections going from module B to module
A are comprised in an (n × m) coupling matrix wAB. Correspondingly, connec-
tions from module A to module B are given as an (m× n) coupling matrix wBA.
Thus, the architecture of the coupled system is given by a matrix w of the form

w =
(

wA wAB

wBA wB

)
, (2)
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and the pair (wAB, wBA) of matrices will be called the coupling structure. A
coupling structure (wAB, wBA) will be called symmetric, iff wAB = wBA, and a
one-way coupling, iff wAB = 0 or wBA = 0 (but not both) .

For simplicity we would like to have modules of the same dimension. Suppose
n > m; then we will add (n−m) isolated neurons to the m neurons of module B,
so that formally B has also n neurons. Thus, in the following the weight matrix
(2) will be considered as a (2n × 2n)-matrix.

The neural activities of module A and B will be denoted ai, bi, i = 1, ...n,
respectively. The activity phase space of the coupled system is then 2n-dimen-
sional, and its discrete parameterized dynamics will be denoted by Fρ : R2n →
R2n. Here ρ := (ρA, ρB, wAB, wBA) denotes a set of parameters for the coupled
system and ρA := (θA, wA) is the parameter set of module A. Furthermore, if
m < n the activities of the (n − m) isolated neurons added to module B will be
constant, and we will set bi = 0 for i = m + 1, . . . , n. Thus, the dynamics Fρ will
be given in the form

ai(t + 1) = θA
i +

n∑

j=1

wA
ij σ(aj(t)) +

n∑

j=1

wAB
ij σ(bj(t)) , (3)

bi(t + 1) = θB
i +

n∑

j=1

wB
ij σ(bj(t)) +

n∑

j=1

wBA
ij σ(aj(t)) . (4)

We are now mainly interested in the case where a subset of module neu-
rons have identical activities during a dynamical process. But sometimes it is
interesting to consider situations, where the coupling of two systems results in
a dynamics which is constrained to a d-dimensional manifold, d < 2n, without
being synchronous [1]. This means that the coupling induces some functional
relation between the states of the two modules. More precisely, we will use the
following

Definition 1 Suppose there exist units im, m = 1, . . . , k, k ≤ n, a homeomor-
phism Φ : Rk → Rk, and a subset D ⊂ R2n, such that (a0, b0) ∈ D implies

lim
t→∞

| Φ(aim(t; a0)) − bim(t; b0) | = 0 , m = 1, . . . , k , (5)

where (a(t; a0), b(t; b0)) denotes the orbit under Fρ through the initial condition
(a0, b0) ∈ R2n. Then this process is called a generalized partial synchronization
of degree k of modules A and B.

Definition 2 A generalized partial synchronization is called global, iff D ≡ R2n,
and local, iff D ⊂ R2n is a proper subset. If k is maximal, i.e. k = n, then it
is called a generalized synchronization. If Φ = id and k ≤ n, then a generalized
partial synchronization is called a partial synchronization. If Φ = id and k = n,
then it is called a complete synchronization.
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Thus, complete synchronization is a special case of a generalized synchro-
nization. Furthermore, a partial synchronization can be at the same time also a
generalized partial synchronization; i.e. the homeomorphism Φ acts as the iden-
tity only on some but not all components. An example for this situation will be
given in section 3.3. If the condition (5) is satisfied for Φ = id, we will say that
modules A and B synchronize on a subset of k neurons. From definition 1 it
follows that only modules with the same number n of non-isolated neurons can
have a nontrivial completely synchronized dynamics.

Although defined here for just two coupled modules comprising time-discrete
neurons with sigmoid output functions, we should note, that complete, gener-
alized, and partial synchronization can also occur in networks of more realistic
“spiking” neurons.

Complete synchronization can be characterized by perfectly synchronous firing
of all cells in the network. This occurs, for example, in networks of identical and
excitatorily connected integrate-and fire cells. Mirollo and Strogatz have given
a rigorous analytical proof that a large class of such networks reaches complete
synchronization in finite time for almost all initial conditions [31].

Generalized synchronization can appear, when the cells in the network are
not identical. In reference [46] Traub et al. have shown that different input cur-
rents into excitatory cells within a network of excitatory and inhibitory neurons
can lead to collective oscillations in the gamma-range, where the excitatory cells
reveal systematic phase-shifts in firing times relative to this collective oscillation;
less input current usually delays firing. Therefore, individual excitatory cells are
not completely synchronized, but their firing times are related by some static
functional relationship, that is, they are synchronized in the generalized sense.
Of course, also scattering synaptic strengths, transmission delays or other param-
eters varying across neurons may induce such systematic deviations from perfect
synchrony.

Some kind of partial synchronization appeared, for example, in a study by Pin-
sky and Rinzel [39]. Here, 100 excitatorily connected two-compartment neurons
were simulated, each containing fast currents responsible for sodium spiking on a
soma-like compartment and slower calcium and calcium-mediated currents on a
dendrite-like compartment. Formally, each cell was described as an 8-dimensional
dynamical system. Isolated neurons, in response to input currents, revealed differ-
ent firing modes; regular spiking at moderate and high input currents, different
kinds of bursting at low inputs, and apparently chaotic dynamics in between.
When cells were coupled (via AMPA and NMDA synapses), Pinsky and Rinzel
observed a collective dynamical mode of burst-synchronization, where all cells
fired regular high-frequency bursts of spikes on a long time-scale (roughly a few
hundred milliseconds), but the fast spikes within bursts where not synchronized.
Although the synchronization of the slow dynamical variables was not perfect,
this can be viewed as partial synchronization, where the slow burst-mediating
variables become (up to small deviations) restricted to a low-dimensional mani-
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fold, but the fast variables responsible for sodium spiking remain asynchronous
(presumably chaotic, although this is not perfectly clear from [39]).

To analyse a partially synchronized dynamics it is convenient to introduce
new coordinates as follows:

ξi :=
1√
2
(ai + bi) , ηi :=

1√
2
(ai − bi) , i = 1, . . . , n . (6)

In terms of these (ξ, η)-coordinates the dynamics F̃ρ of the coupled system reads

ξi(t + 1) =
1√
2
· (θA

i + θB
i ) +

1√
2

n∑

j=1

(wA
ij + wBA

ij ) · g+(ξj(t), ηj(t))

+
1√
2

n∑

j=1

(wB
ij + wAB

ij ) · g−(ξj(t), ηj(t)) , (7)

ηi(t + 1) =
1√
2
· (θA

i − θB
i ) +

1√
2

n∑

j=1

(wA
ij − wBA

ij ) · g+(ξj(t), ηj(t))

− 1√
2

n∑

j=1

(wB
ij − wAB

ij ) · g−(ξj(t), ηj(t))) , (8)

where i = 1, . . . , n, and the functions g± are defined by

g±(x, y) := σ (
1√
2

(x ± y)) , x, y ∈ R .

A partially synchronized orbit (ξ(t), η(t)), t = 0, 1, 2, . . ., of the coupled system
satisfies ηi(t) = 0 for all t = 0, 1, 2, . . ., and i = 1, . . . , k, k ≤ n. The si :=
1√
2
ξi = ai = bi are called synchronized components. Using the (ξ, η)-coordinates

the following statements can be easily verified.

Lemma 1 Let Is = {i1, . . . , ik} denote an index set with k ≤ n. Assume that
the parameter sets ρA, ρB and the coupling structure (wAB, wBA) of the modules
A and B satisfy the following conditions for m = 1, . . . , k:

θA
im

= θB
im

, (wA
imj − wBA

imj) = (wB
imj − wAB

imj) , j ∈ Is (9)

wA
imj = wBA

imj , wB
imj = wAB

imj , j ∈ {1, . . . , n} \ Is . (10)

Then there exists a partially synchronized dynamics constrained to a (2n-k)-
dimensional Fρ-invariant manifold

M(k) := {(a, b) ∈ R2n | bim = aim , m = 1, . . . , k} . (11)

Proof: It suffices to show that if the synchronization conditions (9) and (10) are
satisfied, then every orbit of Fρ through a state partially synchronized on neurons
i1, . . . , ik stays partially synchronized on those neurons for all times. This follows
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by insertion of (9) and (10) into (8) and the observation that g+(x, 0) = g−(x, 0).
If for some time t = t0 we have ηim(t0) = aim(t0) − bim(t0) = 0 for m = 1, . . . , k,
then, with respect to the dynamics F̃ρ one immediately gets ηim(t) = 0, m =
1, . . . , k for all t > t0 from (8). The definition of ηi in (6) then implies the
form (11) for the Fρ-invariant manifold. In the sequel, this (2n− k)-dimensional
submanifold is called the manifold of partially synchronized states of the coupled
system. If k = n, the manifold M := M(n) is simply called the synchronization
manifold. 2

In states, that are only synchronized in the generalized sense, the coordinates
ηi of the synchronized units do not need to vanish. Conditions for generalized
partial synchronization are given in the next lemma.

Lemma 2 Suppose that the conditions of lemma 1 hold for some index set Is

with ks := |Is|. Let Ig = {i1, . . . , ik} be a further index set of k := |Ig|, k ≤
n− ks, and Ig ∩ Is = ∅. Assume that the parameter sets ρA, ρB and the coupling
structure (wAB, wBA) of the modules A and B satisfy the following conditions for
m = 1, . . . , k:

(wA
imj − wBA

imj) = (wB
imj − wAB

imj) if j ∈ Is , (12)

wA
imj = wBA

imj , wB
imj = wAB

imj if j ∈ {1, . . . , n} \ Is . (13)

Then there exists a generalized partially synchronized dynamics constrained to a
(2n-k)-dimensional Fρ-invariant manifold

M̃(k) := {(a, b) ∈ R2n | aim − bim = cim , cim = constant, m = 1, . . . , k} .

If k = n, then there exist orbits of Fρ constrained to an n-dimensional manifold;
i.e., there exists a generalized synchronous dynamics.

Proof: First note, that the conditions (9) and (10) in lemma 1 constrain
parameters for different i in (8) than conditions (12) and (13) in lemma 2 do; this
is, because Is ∩ Ig = ∅. Thus, parameters are not restricted twice and therefore,
they are well defined. Non-constrained parameters for units i in (8) with i ∈
{1, . . . , n}\(Is∪Ig) are, of course, arbitrary. Note further that lemma 1 garantees
the existence of a partially synchronous submanifold M(ks) for components in
Is. This submanifold can be empty, i.e. ks = 0. All ηi, i ∈ Is are zero for
orbits in M(ks). Inserting this, (12) and (13) into (8) for i ∈ Ig it follows that√

2 · ηim = (θA
im

− θB
im

) = cim, cim = constant, m = 1, . . . , k for orbits starting in
M(ks). Therefore, components aim and bim , m = 1, . . . , k are synchronized in the
generalized sense and can be chosen to define the submanifold M̃(k) in lemma 2.
Furthermore, the homeomorphism Φ : Rk → Rk of definition 1 can obviously be
realized by bim = aim − (θA

im
− θB

im
), m = 1, . . . , k. 2

Note 1: In the formulation of the dynamics of coupled neuromodules, and
therefore also in lemmas 1 and 2, we have assumed that inputs θ into module
neurons are stationary. Inspecting the proofs of lemmas 1 and 2, one easily sees,
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that this restriction can be weakened. The lemmas both remain valid, if the
inputs are time-dependend, θ(t), such that synchronization conditions hold for
all times t - e.g. θA

im
(t) = θB

im
(t), t = 0, 1, . . . in (9).

Note 2: From lemma 1 and lemma 2 it follows that a generalized partial
synchronization will occur if the coupling conditions are satisfied and some but
not all θi are identical. The lemmas apply, of course, to different special situations:
for instance, to a one-way coupling (0, wBA), where a module A drives a module
B, i.e. wAB = 0, and the conditions for partial synchronization read

θA
i = θB

i , (wA
ij − wBA

ij ) = wB
ij , i, j = 1, . . . , k (14)

wA
ij = wBA

ij , wB
ij = wAB

ij , i = 1, . . . , k , j = k + 1, . . . , n . (15)

Another special case is that of identical systems coupled symmetrically; i.e.

θA = θB , wA = wB , wBA = wAB . (16)

With si := ai = bi, i = 1, . . . , k, and l = k+1, . . . , n, the (2n−k)-dimensional
partially synchronized dynamics on M(k), denoted by Fρ|M , is given by the equa-
tions

si(t + 1) = θi +
k∑

j=1

w+

ij σ(sj(t)) (17)

+
n∑

l=k+1

wA
il σ(al(t)) +

n∑

l=k+1

wB
il · σ(bl(t)) ,

al(t + 1) = θA
l +

k∑

i=1

(wA
li + wAB

li ) σ(si(t)) (18)

+
n∑

m=k+1

wA
lm σ(am(t)) +

n∑

m=k+1

wAB
lm σ(bm(t)) ,

bl(t + 1) = θB
l +

k∑

i=1

(wB
li + wBA

li ) σ(si(t)) (19)

+
n∑

m=k+1

wBA
lm σ(am(t)) +

n∑

m=k+1

wB
lm σ(bm(t)) ,

where θi := θA
i = θB

i , and the synchronization matrix in (17) is defined as

w+

ij := (wA
ij + wAB

ij ) = (wB
ij + wBA

ij ), i, j = 1, . . . , k. (20)

This follows directly from (7) and the synchronization conditions (9) and (10).
Correspondingly, the matrix appearing in the condition (9) is called the obstruc-
tion matrix

w−
ij := (wA

ij − wBA
ij ) = (wB

ij − wAB
ij ), i, j = 1, . . . , k . (21)
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In general the partially synchronized dynamics Fρ|M may have fixed point
attractors as well as periodic, quasiperiodic or chaotic attractors, all constrained
to M . Although the persistence of a partially synchronized dynamics is guar-
anteed by conditions (9) and (10), it is not at all clear that the dynamics (17)
is asymptotically stable with respect to the dynamics Fρ. Thus, a periodic or
chaotic orbit in M may be an attractor for the partially synchronized dynamics
Fρ|M but not for the global dynamics Fρ of the coupled system [4]. If the dy-
namics constrained to M is an attractor for Fρ, then this partially synchronized
dynamics is asymptotically stable in the sense, that small perturbations will not
desynchronize the system.

To discuss stability aspects of the dynamics constrained to M , it is effective to
use Lyapunov exponent techniques; i.e. we consider the synchronization exponents
λs

i , i = 1, . . . , (2n − k), and the transversal exponents λ⊥
j , j = 1, . . . , k. The

synchronization exponents λs
i are just the (2n − k) Lyapunov exponents of the

dynamics Fρ|M on M given by equations (17) to (19). The transversal exponents
λ⊥

j , j = 1, . . . , k are calculated as Lyapunov exponents with respect to the partial
linearization

L−
ij(s) := w−

ij · σ′(sj) , i, j = 1, . . . , k , (22)

of Fρ along partially synchronized states (ξ, η)), where w− denotes the obstruction
matrix (21).

Partially synchronized chaotic dynamics will be characterized by a situation
where the largest synchronization exponent λs

1 is positive; i.e. λs
1 > 0. On the

other hand, an unstable partially synchronized dynamics on M will be character-
ized by a largest transversal exponent λ⊥

1 (s) satisfying λ⊥
1 > 0. Thus, if a stable

manifold M , containing a chaotic orbit, will turn unstable, then the coupled sys-
tem will enter a hyperchaotic regime [42]; i.e. at least two Lyapunov exponents
of the coupled system are positive.

For the special case of completely synchronized dynamics, i.e. k = n, expo-
nents λs

i and λ⊥
j are derived from the linearizations

L±
ij(s) := w±

ij · σ′(sj) , i, j = 1, . . . , n , (23)

respectively, with w+ the synchronization matrix (20), and w− the obstruction
matrix (21).

If the matrix w− has only zero eigenvalues, then also the linearization L−(s(t))
will have zero eigenvalues along a partially synchronized orbit s(t), and it follows
that the transversal exponents λ⊥

j , j = 1, . . . , k, are all negative. Thus, the
partially synchronized dynamics will be stable for all parameter values satisfying
conditions (9) and (10), and the corresponding coupling structure (wAB, wBA)
of modules will be called stabilizing. Especially, if w− is the zero matrix, we
call (wAB, wBA) minimal. A minimal coupling structure is always stabilizing a
partially synchronous dynamics.
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To destabilize a partially synchronized dynamics of degree k, eigenvalues of w−

must be nonzero and large enough to make contributions to the positivity of the
largest transversal exponent λ⊥

1 . The de-stabilizing property depends furthermore
on the density of an orbit around the partially synchronized states satisfying
si = 0, i = 1, . . . , k.

3 Example 1: Coupling different 3-modules

Numerical examples for the existence of complete synchronization of coupled
neuromodules where given, for example, in [36] for symmetrically coupled iden-
tical systems. Our first example will demonstrate that generalized and partial as
well as complete synchronization can also be observed for coupling of different
subsystems.

Figure 1: A minimal coupling configuration for complete synchronization of a
3-ring (module A) with a bidirectional 3-chain (module B).

To this end we choose the following setup where a 3-ring is coupled to a
bi-directional 3-chain. The dynamical features of the isolated systems are quite
different: besides fixed point attractors 3-rings can have period-2, -3 and period-6
attractors [34], whereas 3-chains can have p-periodic attractors for all p as well
as chaotic attractors [33]. Nonetheless there are many different coupling schemes
which guarantee the existence of synchronized dynamics. We choose modules
and couplings as shown in figure 1. The corresponding dynamics of the coupled
system is then given by

a1(t + 1) := θA
1 + wA

13 σ(a3(t)) + wAB
12 σ(b2(t)) ,

a2(t + 1) := θA
2 + wA

21 σ(a1(t)) + wAB
23 σ(b3(t)) ,

a3(t + 1) := θA
3 + wA

32 σ(a2(t)) ,

(24)
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b1(t + 1) := θB
1 + wB

12 σ(b2(t)) + wBA
13 σ(a3(t)) ,

b2(t + 1) := θB
2 + wB

21 σ(b1(t)) + wB
23 σ(b3(t)) ,

b3(t + 1) := θB
3 + wB

32 σ(b2(t)) .

If, according to (9) and (10), the following conditions are satisfied,

wB
12 = wAB

12 , wA
13 = wBA

13 , wA
21 = wB

21 , wB
23 = wAB

23 , wA
32 = wB

32 ,

θA
1 = θB

1 , θA
2 = θB

2 , θA
3 = θB

3 ,

then a completely synchronized dynamics exists for this configuration. This has
been reported in [37]. It is easy to check that the corresponding obstruction
matrix w− has zero eigenvalues for all parameter values. Thus, the completely
synchronized dynamics is always stable. For the same coupled 3-modules we will
now study the generalized partial synchronized dynamics of different types and
degrees.

3.1 Partial synchronization of degree 1

To start with, we look for a partial synchronization of degree 1 for neurons 1A

and 1B. According to lemma 2, i.e. conditions (9) and (10), parameters have to
satisfy

θA
1 = θB

1 , wB
12 = wAB

12 , wA
13 = wBA

13 . (25)

This can be realized, for instance, by setting the coupling connection wAB
23 in

the original configuration shown in figure 1 to zero. Other parameter values are
arbitrary; we choose inputs of the modules and nonzero weights as follows

θ1 = −0.7 , θ2 = −0.5 , θ3 = −4 , and wB
12 = wAB

12 = 8 ,

wA
21 = wB

21 = wA
32 = wB

32 = 8 , wA
13 = wBA

13 = wB
23 = wAB

23 = −8 . (26)

For these parameters figure 2 displays the dynamics of the system in form of
projections of the 6-dimensional phase-space to different subspaces: in the up-
per left corner the (oA

1 , oA
2 )-subspace of module A is shown, whereas the other

three frames display activities of corresponding neurons in the modules A and B,
(oA

1 , oB
1 ), (oA

2 , oB
2 ), (oA

3 , oA
3 ).

First of all, the irregular attractor structure in the (oA
1 , oA

2 )-plot shows, that
the dynamics inside module A is chaotic, a fact that we also confirmed by cal-
culating Lyapunov exponents. Similarly, the dynamics projected to module B
is chaotic (not shown); but since the modules have different connectivity, pro-
jections of chaotic attractors to modules A and B are in general not identical.

Nonetheless, as seen in the lower left frame of figure 2, neurons 1 in both mod-
ules are synchronized, that is, oA

1 maps identically to oB
1 . In contrast the second

13



Figure 2: Partially synchronized chaos of degree 1 for two coupled 3-modules
having different architectures. Parameters: see text.

and third components of the coupled modules are not synchronized; their dynam-
ics in the common subspaces reveal a more complex relationship. Hence, in the
present example, the 6-dimensional dynamics of the coupled system is constrained
to a 5-dimensional partially synchronized chaotic attractor. As a further fact (not
seen in the figure) this chaotic attractor coexists with a partially synchronized
period-4 attractor. The 5-dimensional partially synchronized dynamics (17) of
this configuration will be stable for all parameter values, because the correspond-
ing obstruction matrix (21) satisfies w−

11 = 0. That the 5-dimensional dynamics
is highly non-trivial can be read from its bifurcation diagram shown in figure
3 for the above given parameter values (26), but with varying θ1 := θA

1 = θB
1 :

Starting from a fixed point attractor at θ1 = −3 a bifurcation to quasiperiodic
attractors occurs around θ1 = −2.4, and, after that, various windows for periodic
and chaotic attractors are visible. Furthermore, over a large parameter domain
the shown attractors coexist with a sequence of p-periodic attractors with pe-
riods p ≤ 4. All coexisting attractors are partially synchronized; thus, partial
synchronization exists over large parameter regions.
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Figure 3: A bifurcation diagram for the partially synchronized dynamics of degree
1 with respect to θ1. Fixed parameters for coupled 3-modules: see text.

3.2 Generalized partial synchronization (degree 1)

We now look for a generalized partial synchronization of degree 1 for neurons
1A and 1B, where these neurons are not perfectly synchronous, but are still con-
strained to a one-dimensional manifold. According to lemma 1 the condition
simply reads

wA
13 = wBA

13 ,

the other parameters are arbitrary. Furthermore, the proof of lemma 1 shows
that the homeomorphism Φ : R1 → R1, mapping the first component of module
A to the corresponding first component of module B wB

12 = wAB
12 is given by the

linear relation
b1 = (θB

1 − θA
1 ) + a1 . (27)

Figure 4, as in the previous example, displays projections of a partially synchro-
nized chaotic attractor of degree 1 to the phase spaces of corresponding neuron
pairs, as well as to the subspace (oA

1 , oA
2 ) of module A. The parameter values for

this chaotic attractor are:

wB
12 = wAB

12 = wA
21 = wB

21 = wA
32 = wB

32 = 8 ,

wA
13 = wBA

13 = wB
23 = wAB

23 = −8 ,

θA
1 = −0.8, θB

1 = −2 , θA
2 = 5.3, θB

2 = 6.1, θA
3 = −5, θB

3 = −4 .

Observe that, in contrast to the previous example, the neurons 1A and 1B

are now only synchronized in the generalized sense - the mapping between their
outputs is not the identity but some other non-linear bijective functional rela-
tionship. (Note, that this relationship does not have the simple linear form (27).
This is, because figure 4 displays output values, oA

1 = σ(a1) and oB
1 = σ(b1) =

15



Figure 4: Projections of a generalized partially synchronized chaotic attractor of
degree 1 for coupled 3-modules. Parameters: see text.

σ(θB
1 − θA

1 + a1).) Again, bifurcation diagrams (not shown) reveal that also a
complex (periodic, quasiperiodic, and chaotic attractors) generalized synchronous
dynamics of degree 1 exists for large parameter domains in this setup.

3.3 Generalized and partial synchronization

Lemma 2 tells us that a generalized synchronization of modules may be realized
with some of the components being exactly synchronized. To demonstrate this
case, where a generalized synchronous dynamics is at the same time partially
synchronous, we choose the following example. Synchronization conditions (9)
and (10) for partial synchronization of degree 2 of the coupled 3-ring and 3-chain
read

wB
12 = wAB

12 , wA
13 = wBA

13 , wA
21 = wB

21 , wB
23 = wAB

23 , (28)

θA
1 = θB

1 , θA
2 = θB

2 .

Figure 5 shows a realization of partial synchronization of degree 2 for the nonzero
parameter values

wB
12 = wAB

12 = wA
21 = wB

21 = wA
32 = 8 , wA

13 = wBA
13 = wB

23 = wAB
23 = −8 ,

wB
32 = 11 , and θ1 = −0.5 , θ2 = −3.3 , θA

3 = −6 , θB
3 = −4 . (29)
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Figure 5: Partially synchronized chaos of degree 2 for two coupled 3-modules
having different architectures. Parameters: see text.

Again projections of the corresponding chaotic dynamics to subspaces (oA
1 , oA

2 ),
(oA

1 , oB
1 ), (oA

2 , oB
2 ), and (oA

3 , oB
3 ) are shown, demonstrating the synchronous activity

of neuron pairs (1A, 1B) and (2A, 2B). As this figure suggests, in addition to partial
synchronization, according to definition (1), this is at the same time an example
for a generalized dynamics of two modules. In fact, the resulting dynamics of
the coupled system is not 4-dimensional - as expected - but it is still constrained
to a 3-dimensional manifold as can be seen from the (oA

3 , oB
3 ) plot. Although the

conditions (28) do not match the conditions (12) and (13) of theorem 2 - we have
8 = wA

32 6= wB
32 = 11 - this is because we can write the dynamics of module B still

as a map of the dynamics of module A as follows:

b1 = a1 , b2 = a2 , b3 = θB
3 +

wB
32

wA
32

(a3 − θA
3 ) .

The obstruction matrix w− (21) for this configuration has again zero eigen-
values, so that the partially synchronized dynamics will be always stable. Bifur-
cation diagrams for this 3-dimensional dynamics (not shown) again reveal that
this dynamics is highly nontrivial and has periodic as well as quasiperiodic and
chaotic attractors, all constrained to a 3-dimensional manifold.
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4 Example 2: Partial synchronization of mod-

ules having different numbers of neurons

Partial synchronization can appear also if the two coupled modules have different
numbers of neurons. To fit the general formalism of section 2, we just have to
add as many isolated neurons to one module such that both modules formally
have the same number of neurons. To demonstrate this, we choose the following
setup where a chaotic 2-module (module A) is coupled to a bi-directional 3-chain
(module B). The dynamics of the isolated modules is given by the equations

a1(t + 1) := θA
1 + wA

12 σ(a2(t)) ,

a2(t + 1) := θA
2 + wA

21 σ(a1(t)) + wA
22 σ(a2(t)) , (30)

b1(t + 1) := θB
1 + wB

12 σ(b2(t)) ,

b2(t + 1) := θB
2 + wB

21 σ(b1(t)) + wB
23 σ(b3(t)) , (31)

b3(t + 1) := θB
3 + wB

32 σ(b2(t)) .

We now look for the partially synchronized dynamics of these two coupled mod-
ules.

4.1 Partial synchronization of degree 1

In the first case we want to synchronize the dynamics of neuron 1A with neu-
ron 1B. The synchronization conditions (9) and (10) lead, for example, to a
configuration shown in figure 6, with parameters satisfying

θA
1 = θB

1 , wA
12 = wBA

12 , wB
12 = wAB

12 . (32)

We observed interesting bifurcation scenarios for the corresponding partially
synchronized dynamics; for instance, from a fixed point attractor to a period-
2 attractor which then bifurcates into a 2-cyclic quasiperiodic attractor. With
growing input θ1 windows for periodic as well as chaotic attractors are observed.
As an example, in figure 7 a chaotic attractor with synchronized neurons 1A and
1B is shown. Parameters for this attractor have values

wA
12 = wBA

12 = wB
12 = wAB

12 = wB
23 = −6 , wA

21 = wB
21 = wB

32 = 6 ,

w22 = −16 , θ1 = θA
1 = θB

1 = 3 , θA
2 = θB

2 = −2 , θB
3 = 0.5 . (33)

Clearly seen is that neurons 1A and 1B are synchronized and 2A and 2B are
not synchronized. The projection of the chaotic dynamics to the phase space
(oA

1 , oA
2 ) of module A is seen in the upper left part. Because the obstruction

matrix satisfies w− = w−
11 = 0, the partial synchronization in this configuration
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Figure 6: Coupling scheme for partial synchronization of degree 1 of a 2-neuron
with a 3-neuron network. Parameters: see text.

Figure 7: A global chaotic attractor of the coupled system shown in figure 6 with
synchronized units 1A and 1B. Parameters: see text.
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is stable for all allowed parameter values. As follows from the synchronization
conditions, synchronization of neurons 1A and 1B persists even if weights wA

12 =
wBA

12 , wAB
21 = wB

21, wB
23, and wB

32 are varying independently. Most interestingly,
the same holds true for independent variations of the (constant) inputs θA

2 , θB
2 ,

and θB
3 . Moreover, according to Note 1 above, as long as θA

1 (t) = θB
1 (t) holds for

every time step t, the partial synchronization will persist in time independent of
the other inputs. Those inputs of course influence the orbit of the coupled system
in phase space, but they do not desynchronize the dynamics.

4.2 Partial synchronization of degree 2

Synchronization conditions (9) and (10) for the degree 2 case are satisfied e.g. by
an architecture shown in figure 8 with parameters satisfying

θA
1 = θB

1 , θA
2 = θB

2 , wA
12 = wB

12, wA
21 = wB

21, wA
22 = wBA

22 , wB
23 = wAB

23 .

This configuration exhibits a partially synchronized chaotic attractor of degree

Figure 8: Coupling configuration for a partial synchronization of degree 2 of a
2-neuron with a 3-neuron network. Parameters: see text.

2 for the following values:

wA
12 = wB

12 = wAB
23 = wB

23 = −6 , wA
21 = wB

21 = wB
32 = 6 , wA

22 = wBA
22 = −16 ,

θ1 = θA
1 = θB

1 = 3 , θA
2 = θB

2 = −2 , θB
3 = 0.5 .

The synchronous activity of neuron pairs (1A, 1B) and (2A, 2B) can be clearly seen
in projections of this attractor to corresponding subspaces shown in figure 9. The
partially synchronized dynamics for this coupling structure is stable for all allowed
parameter values, because its obstruction matrix w− has zero eigenvalues. Again
we observe stable partially synchronized dynamics with non-trivial bifurcation
sequences including fixed point attractors as well as periodic, quasiperiodic and
chaotic attractors.
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Figure 9: A partially synchronized chaotic attractor of degree 2 for the coupled
system shown in figure 8. Parameters: see text.

4.3 Unstable synchronized dynamics

In the examples given above the coupling structure (wAB, wBA) was always stabi-
lizing the synchronous dynamics. Using the system of the last section 4.2, we want
to show that introducing just one more coupling connection between modules will
allow - besides stable synchronization of neurons - also an unstable synchronized
dynamics. This additional connection has to be chosen in such a way that the
corresponding obstruction matrix w− can have nonzero eigenvalues. In the cou-
pled system shown in figure 8 this can be achieved by introducing the weight wBA

22

satisfying the synchronization condition; i.e. (wA
22 − wBA

22 ) = wAB
22 6= 0. Then the

(2 × 2) obstruction matrix has nonzero components w−
12 = wA

12, w−
21 = wA

21, and
w−

22 = (wA
22 − wBA

22 ).
We calculate the transversal Lyapunov exponent λ⊥ for the corresponding

3-dimensional synchronized dynamics

s1(t + 1) = θ1 + w+

12 σ(s2) ,

s2(t + 1) = θ2 + w+

21 σ(s1) + w+

22 σ(s2) + w+

23 σ(b3) , (34)

b3(t + 1) = θB
3 + wB

32 σ(s2) .
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Figure 10: An asynchronous chaotic attractor for parameters (see text) where
the partially synchronized dynamics is unstable.

with θ1 = θA
1 = θB

1 , θ2 = θA
2 = θB

2 , and use the convenient parameter values

w+

12 = −6 , w+

21 = wB
32 = 6 , wA

22 = −16 , wAB
22 = 11 ,

wBA
22 = −5 , w+

22 = −11 , θ1 = 2 , θ2 = 2.5 , θB
3 = 2 . (35)

Then, the obstruction matrix has nonzero components w−
12 = −6, w−

21 = 6, and
w−

22 = −11.
In figure 10 an asynchronous chaotic attractor is depicted for parameter val-

ues as given above in (35), which is visible instead of the unstable partially
synchronized quasiperiodic dynamics predicted by (34). Unstability of the par-
tially synchronized dynamics can be read also from figure 13, where the largest
transversal Lyapunov exponent is shown to be positive for θ1 = 2.

Figure 11 shows the bifurcation diagram with respect to varying inputs θ1 for
the corresponding partially synchronized dynamics of degree 2 defined by (34).
It shows a bifurcation from a fixed point attractor to quasiperiodic dynamics
followed by a window of period-3 attractors. Before the dynamics ends up in
period-2 attractors there is a window of a period-3 attractors coexisting with
quasiperiodic and fixed point attractors. Not all of these attractors are stable,
that is, attractors of the full 6-dimensional dynamics.
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Figure 11: A bifurcation diagram for the (stable and unstable) partially synchro-
nized dynamics of degree 2 with respect to θ1.

Figure 12: A bifurcation diagram for the observed (synchronous and asyn-
chronous) dynamics with respect to slowly varying θ1.
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Figure 13: Transversal Lyapunov exponents for the partially synchronized dy-
namics of degree 2 with respect to θ1.
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This is demonstrated in figure 12 by the corresponding bifurcation diagram for
the “observable” asymptotic dynamics of the coupled system. It reveals a quite
different behavior: At first it follows the synchronous behavior in bifurcating
from a fixed point attractor to a quasiperiodic one, but shortly afterwards it
bifurcates to an asynchronous quasiperiodic attractor, followed by a window of
periodic attractors with higher periods, and then a chaotic domain. Around
θ1 = 2.5 it enters again the stable synchronized period-3 domain, and bifurcates
to asynchronous chaotic attractors and periodic attractors around θ1 = 5. This
sequence of stable and unstable partially synchronized dynamics can be followed
at the same time by the behavior of the largest transversal Lyapunov exponent
λ⊥

1 which is displayed in figure 13.

5 Discussion

In summary, we have shown that synchronized activity of groups of neurons in
a system of coupled recurrent neural networks is always achievable, if the sum
of bias terms and stationary external inputs to corresponding module neurons
are identical, and coupling connections are set appropriately. Furthermore, the
coupled networks can be of different type and dimension. The partially syn-
chronized dynamics of the coupled system is describable as that of an isolated
neuromodule C+ with weight matrix given by the so-called synchronization ma-
trix w+. The reduced system is typically - although not necessarily - different
from each of the coupled systems. Depending on the module parameters of C+

(weights and bias terms/stationary inputs), the partially synchronized orbits can
be periodic, quasiperiodic or chaotic. The synchronization will be stable, if these
orbits, constrained to the manifold of partially synchronized states, are attrac-
tors for the dynamics of the coupled system. Otherwise it is unstable. Stability
of a partially synchronized dynamics can be checked numerically by calculating
the largest transversal Lyapunov exponent which is determined by the so-called
obstruction matrix w−.

Taking the experiences with completely synchronized neuromodules into ac-
count [36], one has to realize that for large parameter domains stable synchronous
dynamics will co-exist with asynchronous periodic, quasiperiodic or even chaotic
attractors. Thus, whether a system ends up asymptotically in a partially syn-
chronous mode or not depends crucially on initial conditions, i.e. on the internal
state of the system. In this sense the reaction to external signals depends also on
the history of the system itself. This introduces memory effects into the behav-
ior of coupled systems. Furthermore, a synchronized mode often persists even if
external inputs are time dependent.

Desynchronization of module dynamics can be achieved in different ways.
From the synchronization conditions (9) and (10) it is clear that diverging exter-
nal inputs or other inappropriate parameter settings (module weights or coupling
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strengths) will immediately desynchronize the modules. Depending on the cou-
pling conditions a mode of lower degree of synchronization may be reached or the
system may completely desynchronize.

Different from this standard situation, certain external signals may also be
used to drive the composed system into domains where the - still existing - syn-
chronized dynamics gets unstable. In such unstable parameter domains, syn-
chronization is particularly sensitive to perturbations transversal to the synchro-
nization manifold; hence, appropriate control signals may be used to transiently
modulate the responsiveness of the coupled network to reach quick and active
desynchronization of modules reacting to slightly different input signals. On the
other hand, varying the inputs of non-synchronized neurons will not effect the
presence of partial synchronization; it will just alter occasionally the type of the
synchronized dynamics, following, for instance, a bifurcation sequence.

Putting things together, synchronization of a specific group of neurons in re-
sponse to external specific stimuli depends in a complex way on the connectivity
of the system, on the internal state (the history) of the system, as well as the
setting of other parameters, like inputs to non-synchronous neurons. Further-
more, parameter changes can select different types (periodic, chaotic) of partially
synchronous dynamics in response to one and the same stimulus.

We have further shown that beside stable and unstable complete synchro-
nization different types of generalized as well as partial synchronization can be
realized in coupled neuromodules. According to lemma 1 and the displayed nu-
merical examples, a generalized synchronous dynamics of coupled modules will
appear if the synchronization conditions (9) and (10) for the connectivity are
satisfied, and some but not all input/bias terms of corresponding neurons are
identical. This is an interesting feature, because the effective dynamics of a cou-
pled systems is constrained to a lower dimensional manifold, as it is the case for
the synchronized dynamics, but the homeomorphism mapping one (sub)system
to the other is no longer the identity. In addition, generalized synchronization
can be further restricted to only parts of the coupled system (generalized par-
tial synchronization). This way the spatio-temporal structure of the (generalized)
synchronized signals can be changed continuously within stable parameter ranges
or discontinuously at stability borders; effects which may in turn be used for neu-
ral coding (e.g. [29, 46, 44]). Because different constraining manifolds can be
selected by different coupling schemes of modules, this may be also a versatile
feature for shaping dynamic properties of neural and cognitive systems.

Parameters may also be used to decide, whether a system is responding to
a given stimulus with a partially synchronous mode at all. Physiologically such
parameters may be identified as subcortical input, which, for instance, is known
to strongly modulate spatial ranges of synchronization of cortical oscillations in
the alpha- and gamma-range (e.g. [41]). Alternatively, parameter changes may be
represented by feedback from higher cortical areas either in the form of integrative
input signals, that organize or ‘bind’ otherwise isolated local submodules into
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larger functional networks [6, 14, 44], or as part of some attentional mechanism.
One should also note, that such feedback does not just provide electrical

input into cortical cells. By varying excitability of cells, it is also capable to
change the functional connectivity within the network [3]. This way different
effective coupling schemes could be selected that support different kinds of col-
lective dynamics. A similar role may also be played by neuromodulatory (e.g. the
monoaminergic) transmitter systems in the brain. Their influence on functional
connectivity as well as their capability to switch dynamical properties of complex
collective modes of activation have repeatedly been demonstrated (e.g. [24, 26]).

The modules in this paper were composed of standard graded neurons. Re-
sults, however, are not restricted to networks of simple sigmoid neurons. Com-
plex dynamics can similarly be observed in networks of “spiking neurons” ranging
from simple integrate-and-fire cells to conductance based compartmental neuron
models. Observed effects, so far, include complete, generalized, and partial syn-
chronization, hysteresis, chaotic dynamics, and more [9, 11, 16, 23, 39, 45, 46, 48].

Although the theoretical analysis of networks of spiking neurons is consid-
erably more difficult than the calculations presented in this paper and mathe-
matical studies have been performed to date only for some restricted dynamical
modes (mainly asynchronous firing and complete synchronization, see for exam-
ple [18, 31, 47]), we expect that the collective dynamical modes of such networks
are at least as abundant than those revealed by our simpler model systems.

We believe that the dynamical phenomenology of the presented results, al-
though derived for formal neural networks, can stimulate the development of con-
ceptually new dynamical models for cortical information processing or even cog-
nitive capabilities [33]. As a direct application, the rather typical co-existence of
synchronized modes with modes of asynchronous dynamics generalizes functional
properties like “feature binding” often attributed to the synchronization of oscilla-
tions. At the same time it introduces memory aspects into these systems through
generalized hysteresis effects. Furthermore, since synchronization and desynchro-
nization of modules can be controlled by different parameters, attention-guided
synchronization of subsystems is an additional interesting functional feature of
coupled neuromodules.
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