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Abstract

The synchronization of neural signals has been proposed as a tem-
poral coding scheme in distributed cortical networks. Theoretical
studies in that direction mainly focused on the synchronization of cou-
pled oscillatory subsystems. In the present work we show that several
complex types of synchronization previously described for graded re-
sponse neurons appear similarly also in biologically realistic networks
of spiking and compartmental neurons. This includes synchronized
complex spatio-temporal behavior, partial and generalized synchro-
nization. The results suggest a similarly rich spatio-temporal behavior
in real neural systems and may guide experimental research towards
the study of complex modes of synchronization and their neuromod-
ulation.
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1 Introduction

The synchronization of neural signals has been proposed as a temporal cod-
ing scheme expressing the cooperated computation in distributed cortical
networks [1, 8]. Theoretical studies in that direction mainly focused on the
synchronization of coupled oscillatory subsystems [1, 3, 4, 7]; they usually
neglected more complex dynamical modes, that are known to exist already
on the single-unit level [2, 7]. Recently we described synchronization phe-
nomena - considerably more complex than synchronized oscillations - in two
small mutually coupled recurrent networks comprising graded response neu-
rons [5, 6]. For instance, we observed that (1) attractors of the coupled
system can contain completely synchronized periodic, quasiperiodic or even
chaotic orbits; (2) the synchronization can also be only partial, referring to
a situation where subsets and not all of the neurons in each subnetwork
synchronize; (3) or it can be generalized, meaning that a non-trivial func-
tion maps the state of one subsystem onto that of the other (a special case
of this situation is p:q-locking). Moreover, (4) attractors of different types,
dynamic complexity and degree of (partial) synchronization can coexist for
the same set of parameters, and (5) any single attractor can comprise cells
that are asynchronous, partially synchronized, or synchronized in the gen-
eralized sense. Finally, (6) all this is possible even if the coupled networks
have different architectures or a different number of neurons; especially, even
non-identical systems can often synchronize perfectly. The type of synchro-
nization depends in an intricate way on external stimuli, modulatory signals,
the history and connectivity of the network as well as other parameters.

These results were obtained in [5] for networks comprising artificial time-
discrete graded response neurons. The present work now aims to demon-
strate that phenomena very similar to those in [5] appear also in biologi-
cally more plausible spiking neuron networks. This suggests a similarly rich
spatio-temporal behavior in real neural systems and may guide experimental
research towards the study of complex modes of synchronization and their
neuromodulation.

2 Example with integrate-and-fire neurons

We first demonstrate different types of synchronization in a network of
integrate-and-fire neurons. This should also make our conceptual approach
clear. The dynamics of an integrate-and-fire neuron reads (cf. e.g. [3, 4])

τi

dxi

dt
(t) = −xi(t) + Ii(t) +

N∑

j=1

wijzj(t) . (1)
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Here, xi(t) is the membrane potential of neuron i and τi is its membrane
time constant. Ii(t) is some external input and the sum represents input
from other cells. The wij are synaptic weights and zj(t) is the output of
cell j. Neuron i emits a Dirac-spike, zi(t) = δ(t − tf), at time tf when its
potential reaches a fixed firing threshold ϑi = 1 at that time. In addition,
right after firing the potential is reset to zero, i.e. xi(tf+) = 0.

Using these standard equations, spikes arriving at a target cell, say neuron
i, evoke a discontinuos jump in the potential xi. This discontinuity is an
artefact of the simple model, but it has intricate implications on the time-
order of spikes in the network. In especially, it destroys the possibility for
stable synchrony in networks of excitatorily connected identical integrate-
and-fire cells (cf. [3]). Arguments for this conjecture are given in [5] and are
not repeated here. To resolve this problem, we proceed as in [3, 4, 5] and
extend the standard update scheme by the following rule: if a neuron has
fired at time t, then spikes that appear immediately afterwards but virtually
at the same time t+ have no impact on the membrane potential. (Such spikes,
for instance, may stem from neurons that are raised above threshold by the
firing of the cell itself). This rule implements some kind of refractoriness [5].
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Figure 1: Differently synchronized neurons in a network of integrate-and-fire
cells. Left: Network architecture. Right: Example simulation.

Figure 1 shows an example simulation. On the left side the network archi-
tecture is depicted showing a 3-ring coupled to a 3-chain (i.e. 2 subnetworks
of different architecture are coupled). Complete synchronization of complex
firing patterns in a ring-chain architecture has been demonstrated in [5]. The
four frames on the right hand side of figure 1 show a more complicated mode
of synchronization. Displayed in each frame are the potential values of two
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neurons sampled whenever anyone of the 6 neurons in the network fires. The
upper left frame displays potentials of cells 1 and 2 inside the ring-subnetwork
(denoted by an A). Apparently, there is no obvious functional relationship
between both neurons, which indicates that the firing pattern inside the ring
is complex (perhaps chaotic, but we cannot rule out the possibility that it is
cyclic with an extremely long period). The lower left plot shows potentials
for neurons 1 in module A and B respectively. Because the plot is confined
to the main diagonal these two neurons are perfectly synchronous. In con-
trast, neurons 3 in module A and B are essentially asynchronous, although
the respective plot (upper right) shows some structure. Accordingly, the
synchronization of the whole system is only partial. Furthermore, neurons 2
in A and B give an example for generalized synchronization. They are not
perfectly synchronous (i.e. confined to the diagonal), but the potential value
xB

2 can be predicted with high accuracy from xA
2 . Neuron 2 in A fires two

spikes, when the corresponding neuron in B fires only a single spike.

3 Biological examples

For demonstration purposes the previous section gave a still somewhat tech-
nical example of complex synchronization. We now briefly discuss some ex-
amples, where comparable phenomena may appear in real neural systems.

Complete synchronization has, of course, often been demonstrated in the
context of binding by synchronization using networks of oscillatory subunits
(e.g. [1, 3, 4] and many more).

Generalized synchronization most easily appears, when the cells in the
network are not identical. For instance, Traub et al. [9] considered a network
of excitatory and inhibitory compartmental neurons where the excitatory
cells received differently strong input currents. The network revealed collec-
tive oscillations in the gamma-range, but less input current delayed firing of
the excitatory cells relative to the collective oscillation. Accordingly, their
firing times were related by some static functional relationship (up to noise),
and thus, the cells were synchronized in the generalized sense.

An example for (approximate) partial synchronization is shown in figure 2,
where we simulated a network of 100 excitatorily connected two-compartment
Pinsky-Rinzel-neurons [7]. The network was virtually identical to that de-
scribed in [7]. Each cell had 8 independent intrinsic variables including fast
currents responsible for sodium spiking on a soma-like compartment and
slower calcium and calcium-mediated currents on a dendrite-like compart-
ment. Isolated neurons revealed several firing modes in response to input
currents: regular spiking at moderate and high currents, different kinds of
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Figure 2: Example for partial synchronization in a network of 100 Pinsky-
Rinzel neurons [7]. The slow variables q of two (arbitrary) neurons are almost
synchronous (left side) but the fast sodium spikes are not (right side).

bursting at low inputs, and apparently chaotic dynamics in between (cf. [7]).
When the cells were synaptically coupled, Pinsky and Rinzel observed a col-
lective dynamical mode of burst-synchronization, where all cells fired brief,
regular and roughly synchronized high-frequency bursts of spikes. This dy-
namical state is analyzed more closely in figure 2, where the (fast) soma-
potentials, Vs, of two neurons are plotted against each other on the right
hand side and the slow intrinsic variables q of these neurons on the left hand
side. Apparently, the slow burst-mediating variables are almost confined to
the main diagonal, indicating near synchrony, but the fast variables responsi-
ble for sodium spiking remain asynchronous (presumably chaotic). This can
be viewed as partial synchronization of the slow, but not the fast variables.

4 Discussion

In summary we have shown that several generalized types of synchronization
previously described for networks of artificial time-discrete graded response
neurons [5, 6] appear similarly also in biologically realistic networks of spiking
neurons. Beyond the often considered synchronization of identical oscillators,
complete synchronization can also be reached in complex spatio-temporal
states of non-identical subsystems. Furthermore, the synchronization can be
confined to only subsets of the dynamical variables of the coupled systems
(partial synchronization), and it can be generalized, i.e. the relation between
synchronized variables must not be the identity.

As in [6] we expect that external signals can easily switch the network
behavior between different types of stable or unstable synchronization, or
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different degrees of synchrony. Neuromodulation should have similar effects
by either influencing the intrinsic complexity of the single-cell dynamics or
the effective connectivity structure of whole networks (cf. e.g. [2]). This
way, the synchronization behavior of distributed networks may be changed
dynamically also in real neural systems.
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