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Abstract

This article presents a method, which enables an autonomous mo-
bile robot to create an internal representation of the external world.
The elements of this internal representation are the dynamical features
of a neuro-controller and their time regime during the interaction of
the robot with its environment. As an examples of this method the be-
havior of a Khepera robot is studied, which is controlled by a recurrent
neural network. This controller has been evolved to solve an obsta-
cle avoidance task. Analytical investigations show that this recurrent
controller has four behavior relevant attractors, which can be directly
related to the following environmental categories: free space, obsta-
cle left/right, and deadlock situation. Temporal sequences of those
attractors, which occur during a run of the robot are used to charac-
terize the robot-environment interaction. To represent the temporal
sequences a technique, called macro-action maps, is applied. Experi-
ments indicate that macro-action maps allow to built up more complex
environmental categories and enable an autonomous mobile robot to
solve navigation tasks.

∗in: M.V. Butz, O. Sigaud, P. Gérard (Eds.), Anticipatory Behavior in Adaptive Learn-

ing Systems, LNAI 2684, Springer, Berlin 2003, pp. 222-242.
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1 Introduction

There are now many attempts to increase the intelligence or cognitive abil-
ities of autonomous systems like physical mobile robots. This seems to be
desirable for many tasks one expects these systems to solve. Equipped with
several types of sensors and with enough actuators they should be able to
navigate and act in non-trivial changing environments. Sometimes they are
assumed to develop also communication skills and some kind of social behav-
ior which allows cooperative interactions - possibly with humans. In some
sense they are often expected to mimic living systems.

This is of course a challenging perspective, and in general it is assumed
that a better understanding of how such systems build up internal representa-
tions of their environment, how these representations can be modified during
interaction with the environment, and how it can be adapted to a dynamical
task management, are the prerequisites of this desired development.

On the other hand, using advanced dynamical neural networks for be-
havior control, it is quite unclear how an internal representation in a neuro-
controller will look like, i.e. on which level it will be implemented. It could
be implemented as specific connectivity structure, as a weight matrix, as sta-
tionary states, or in terms of attractors of internal dynamical processes [25].
To approach these problems, it will be interesting to know, for instance, how
motor commands can be mapped onto their sensory consequences or how
a desired stream of sensor inputs can be accomplished by an appropriate
sequence of motor commands [26], [15].

Following a modular neuro-dynamics approach, the basic assumption of
this work is that cognitive performance is based on internal dynamical prop-
erties, which are provided by a recurrent connectivity structure of neural
subsystems [2],[5],[11], [21]. An evolutionary robotics approach [18] is used to
develop appropriate recurrent neuro-controller. But if we assume that higher
cognitive abilities (e.g. planning tasks) need some kind of internal represen-
tation of the external world, one suggests to use those dynamical properties
as basic elements for internal representations. The interaction of the robot
is not only purely triggered by environmental conditions but is determined
by specific internal dynamical features of its neural control system. This
means in different situations different dynamical properties become active.
Thus, it is suggested that those dynamical properties are the basic entities
for a description of the robot’s environment. Following this argumentation
future prediction or expectations of robot behavior are state anticipations.
If a state is interpreted as an specific “attractor of the robot-environment
system”, this implies that any goal-directed behavior can only be developed
in a sensori-motor loop. Thus, the main focus of this work is to demonstrate
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how different dynamical features of neuro-controllers can be extracted during
the interaction of the robot with its environment, how they can be used for
classification of environmental properties, and how such categories can be
utilized to encode and produce goal-directed behavior.

In the following investigations we concentrate, as a demonstration of
method, on a simple example of robot behavior. An evolved recurrent neuro-
controller is introduced which is able to endow miniature Khepera robots
[16] with a robust obstacle avoidance behavior (section 2). The prominent
feature of the used evolutionary algorithm ENS3 [23] is its ability to evolve
neural networks of general recurrent type without a specific connectivity
structure determined in advance, which makes this algorithm similar to the
GNARL algorithm [1]. It is thus mainly used for structure development, but
it optimizes parameter values, like weights and bias terms at the same time.
Only the number of input and output neurons of a controller are fixed ac-
cording to a given sensor-motor configuration. Therefore resulting networks
can have any kind of connectivity structure, including feedback-loops and
self-connections.

In section 3 an implementation of a standard Braitenberg controller (BC)
[7] and of an evolved neural network, called the minimal recurrent controller
(MRC) [9], are used to analyze how the interaction of a robot with its different
environments can be represented in terms of dynamical controller features.
For this purpose methods like the first return map (FRM) of appropriate sen-
sor and motor data are applied. In section 4 a method called macro-action
maps (MAM) is introduced to represent temporal sequences of specific dy-
namical features during the interaction of the robot. The specific dynamical
features can be interpreted as “attractors of the robot-environment system”,
and the sequence of successively visited domains can be seen to represent
relevant aspects of the environment and of the task, respectively. Some ex-
periments are presented which illustrate how macro-action maps represent
the robot-environment interaction and further on, how the elements of those
maps can be used to build up more complex environmental categories. It is
shown that those categories can enable an autonomous mobile robot to solve
navigation tasks.

2 The Task

The task is to control a miniature robot, the Khepera, such that it can move
collision free in a given environment with scattered objects; i.e., the classical
obstacle avoiding task. To solve this task, eight infrared sensors can be used
as proximity sensors, six at the front, two at the rear, and there are two
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wheels driven by two motors. The controllers only use two inputs, I0 and
I1. At each time step t they serve as buffers for the average of the current
values of the three left, respectively the three right front sensors. Data from
the rear sensors of the robot are not used. Controllers will have two output
units, O0 and O1, providing the signals driving the left, respectively right
motor. The neurons of the controllers will be of the additive type; i.e. their
dynamics is given by

ai(t + 1) = θi +
n

∑

j=1

wij · f(aj(t)) , (1)

where the activation ai of neuron i at time t + 1 is the sum of its bias θi and
the weighted sum of the outputs f(aj) of the other neurons at time t, and
wij denotes the strength of the connection from neuron j to neuron i. The
transfer function f will be defined differently for both controllers. For the
BC it is implemented as follows:

f(x) =











0 : x < −1
1

2
(x + 1) : −1 ≤ x ≤ 1

1 : x > 1

For the MRC we use f(x) = tanh(x) as transfer function. The connectiv-
ity of the controllers and a typical path of a simulated robot in one of the
environments is shown in Figure 1.

2.1 The Braitenberg-Controller

In the case of the BC the sensor signals are pre-processed in such a way
that controllers get input values I0,1 between 0 and +1. They increase with
decreasing distance between sensor and obstacle. In order to realize separate
back- and forward movements for each wheel one needs positive and negative
signals M0 and M1, driving the left and right motor. They are provided by a
post-processing of controller outputs O0, O1 according to: M0,1 = 2 ·O0,1−1 .

Wiring and bias terms of the BC are inspired by [17]. Each controller output
has excitatory connections to the sensors on its own side and inhibitory
connections to the sensors on the opposite side. Thus, this implementation
of the BC is a simple feed-forward network. The two bias terms realize
a positive offset value for each motor, and therefore a forward motion is
generated when the robot receives no sensor inputs. An input signal, I0 say,
steers the robot away from obstacles, as it inhibits the output unit O1 and
at the same excites the output unit O0. 1.
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Figure 1: Structure of the two controllers (a) BC and (b) MRC, which solve
the obstacle avoidance task. Figure (c) indicates the behavior of a simulated
Khepera robot controlled by the MRC.

2.2 The Evolved Minimal Recurrent Controller

The sensor signals for the MRC are pre-processed such that input values for
I0 and I1 are mapped to the interval [−1; +1]. They increase with decreasing
distance of an obstacle from the sensors. The interval [−1; +1] for input
values is chosen for consistency, because the MRC uses tanh as transfer
function for the two output units. There are no bias terms, and no post-
processing for the motor signals is necessary in this case.

Given these two input and output units, the evolutionary ENS3-algorithm
[23] is used to develop a controller achieving the desired properties without
employing an internal unit. One of the results, shown in Figure 1(b), is used
for the following discussions. This controller, the MRC, has positive self-
connections (1.46 and 3.19) for its output units, which interact recurrently
by inhibitory connections −7.42 and −2.94. It is well known from analytical
investigations [20], [22] that single units with self-connections larger than +1
and 2-neuron loops with an even number of inhibitory connections can have
co-existing fixed point attractors providing a hysteresis effect. The dynam-
ical interplay of these three structures generates the advanced behavior of
robots [9] as described in the following section.

2.3 Robot Behavior Controlled by BC and MRC

The BC and the MRC were introduced as networks which solve an obstacle
avoidance task. But, the actual behavior is different. Figure 1(c) indicates
a typical path of the robot generated by the MRC. It shows both, obstacle
avoidance and exploration behavior. The behavior of the physical robot con-
trolled by this network is comparable to that of the simulated one. Especially
sharp corners and dead ends can be handled correctly, as indicated in the
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upper right corner of the environment in Figure 1c. In contrast to that the
behavior of the BC is very different. Because it realizes an obstacle avoidance
task in the sense that it turns to the right if an obstacle is detected on the left
and the other way round. But in the case of deadlocks provoked by sharp cor-
ners or impasses it gets stuck and has no chance to escape autonomously from
such situations. Hence one can say, the MRC shows a qualitatively improved
behavior, since its interaction with the environment is context-sensitive in
contrast to the pure reactive behavior of the BC. This better performance
of the MRC is produced by the interplay of three different hysteresis effects
generated by the already mentioned recurrent connectivity structure of the
MRC. The hysteresis effect i.e. evoked by the positive self-connection on out-
put unit O0 (in the following denoted by LHE for left-side hysteresis effect)
provides an appropriate turning angle for avoiding an obstacle on the right
side. Whereas the self-connection on output unit O1 generates a right-side
hysteresis effect (RHE), which produces a right turn to avoid an obstacle on
the left. The escape of the robot from dead ends is caused by the extended
hysteresis effect (EHE), which lets the robot turn until it has a free space
in front of it. The EHE results from an interplay of the LHE and the RHE
which is mediated by the inhibitory ring of units O0 and O1 [9].

3 Sensori-Motor First Return Maps

In this section we will utilize the so called first return maps of sensor signals
and motor signals, respectively, to represent the robot-environment inter-
actions. These maps are defined as follows: The sensor first return map
(S-FRM) plots the difference ∆I := (I0 − I1) of the two inputs I0, I1 at time
t + 1 over the difference at time t. Correspondingly, the motor first return
map (M-FRM) plots the difference ∆O := (O0 − O1) between the output
signals O0, O1 to the left and right motors at time t + 1 over the difference
at time t. We also make use of the sensori-motor map (SMM), which plots
∆O(t) over ∆I(t).

For these plots there are three characteristic points on the main diagonal:
the lower left corner with coordinates L = (−2,−2), the origin (0, 0), and the
upper right corner R = (2, 2). For the S-FRM the points L and R represent
a near obstacle at the right, and left side of the robot, respectively. The
origin represents in general obstacle free space. For the M-FRM the points
L and R represent left and right turns on the spot with maximal angular
velocity, points on the main diagonal constant circular motion, and the origin
represents straight movement along a line. Finally, a SMM represents the
action following a sensor stimulus. The point L stands for a fast left turn
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of the robot if there is a near object at its right side, and R stand for a
fast right turn if an obstacle appears at the left side. The origin codes the
situation where there are identical left and right sensor inputs (they may, of
course, be zero) and the robot reacts with a straight movement. Points in
the upper left and lower right quadrants represent impossible situations like
almost instantaneous jumps of objects from one side to the other (S-FRM),
or instantaneous switching between left and right rotations (M-FRM), or
undesirable reactions turns toward an object (SMM). Relevant quadrants for
the discussion are therefore the upper right (x > 0, y > 0) and lower left
quadrant (x < 0, y < 0), called R-quadrant and L-quadrant, respectively.
Of course paths in the R-quadrant correspond to right turns, those in the
L-quadrant to left turns.

For comparison, in Figure 2 these three types of first return maps are
depicted for the Braitenberg controller and the minimal recurrent controller.
These representations of sensori-motor signals clearly show the different con-
trol techniques applied by the two networks. Looking at the S-FRMs (fig-
ures (a)), one realizes that points accumulate around the main diagonal;
i.e. successive differences in inputs change only gradually during time steps.
According to the pre-processing of sensor data one observes that the BC
receives smaller differences of input values than the MRC. Next consider
the M-FRMs of the two controllers (figures (b)). The M-FRM of the BC
appears as a more or less stretched version of its S-FRM in Figure 2(a), indi-
cating roughly a pure reactive response of the controller to its sensor inputs.
Whereas the M-FRM of the MRC shows a significantly different pattern.
Both relevant quadrants show a sequence of points which can be described
as leaf-shaped. These curves can be divided into upper and lower parts; i.e.,
parts above, respectively below the main diagonal. We will first concentrate
on the L-quadrant.

Due to the obstacle avoidance task, for which the fitness function rewards
straight movements of the robot, we expect that the evolved MRC tries to
minimize the difference of the outputs as fast as possible. But a somewhat
different behavior is observed and can be explained as a hysteresis effect.
Whenever the output difference ∆O(t) at time t grows (upper part), the
output will grow steadily until it reaches its maximum. In fact, there are no
shortcuts between the upper and lower path. Once it reaches the maximum
difference, the MRC will steadily reduce the output difference until it reaches
zero. Thus the origin and the point L are the only intersections of the upper
and lower paths in the L-quadrant. The reason for this can be read from
Figure 2(c) and will be discussed later in this section. If one looks at the R-
quadrant, a very similar behavior is observed. The MRC steadily increases or
decreases the difference of its output until it reaches one of the intersections
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points, R or the origin. But one can observe also an additional feature. The
MRC allows a much stronger growth of differences in the R-quadrant. As
will be shown later, it also keeps the maximum positive difference ∆O for a
longer time than the negative maximum difference. This is indication for the
strategy to leave dead ends and sharp corners.

BC : (a) (b) (c)

MRC:(a) (b) (c)

Figure 2: First return maps of the two controllers taken while the physical
robot was moving in its environment: (a) first return map of the difference
∆I of input values, and (b) of the difference ∆O of output values; (c) the
sensori-motor map plotting ∆O(t) over ∆I(t).

Next the SMMs of the controllers are compared (Figures 2(c)). The
Braitenberg controller shows mainly three different activities corresponding
to output differences ∆O = 1, 0, and −1. We will start the analysis at the
origin. If the input difference ∆I increases to a certain threshold, the output
difference ∆O will jump to its maximum. If the difference of the input ∆I is
large and then slowly decreases until it falls below a positive threshold, then
∆O will jump to 0. The same holds for negative input differences and the
negative threshold value.

Analyzing the MRC, hysteresis effects are observed. The inner narrow
loops in the R- and the L- quadrant correspond to hysteresis intervals for
positive and negative input differences ∆I . They appear as a “widening” of
the jump lines of the BC. The figure shows, that for the MRC one has ∆O ≈ 0
for a plateau of input differences ∆I . If the positive input difference exceeds
a certain positive threshold value, the ∆O will jump to its maximum. If
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then ∆I decreases, ∆O will stay constant until ∆I falls below a second, lower
threshold value. For L-quadrant a similar behavior is observed. But there
is a third hysteresis seen in Figures 2(c) for the MRC, which is remarkable.
To see this, assume the system is in a state where obstacles are at equal
distance from the robot and therefore it moves straight forward; i.e., we are
in the origin of the SMM and the robot moves into a deadlock situation.
If now the input difference ∆I increases steadily the output difference ∆O

will then jump to a high value at some threshold, as discussed before. But
if ∆I is now decreasing, ∆O can still remain stable at the high value, even
if the input difference falls below the negative threshold value for the inner
hysteresis. It is exactly this feature which is needed to handle dead ends
and sharp corners. If the robot is in a sharp corner, it needs to turn in
one direction, even if the difference in inputs decreases significantly. Else the
robot would try to avoid the side on which its input is higher, thereby turning
towards the other side with the lower sensor input. Then the higher input
value would decrease, while the lower would increase, until the situations
is reversed and the direction of rotation, correspondingly. The resulting
behavior is shown by the Braitenberg controller. Hysteresis is the solution to
this deadlock situations, and it is provided by the recurrent structure of the
MRC as demonstrated in [9]. To emphasize this result a 3-dimensional plot of
the SMM is plotted adding the time axis (Figure 3). The first two maximum
differences (corresponding to L- and R-points) show how the MRC reacts
to corners. The last maximum difference shows how the MRC reacts to a
dead end or a sharp corner. The MRC provides maximum output difference
∆O for a longer time (as can be seen from the 2-dimensional projection in
the lower figure) until the robot can go straight ahead again. Observing the
physical robot, one can see clear 180-degree turns in such dead end situations.
Figure 4 demonstrates the robustness of the MRC. During the interaction of
the robot most of the time the control signals lie in those domains, which
produce precise actions like moving straight (40%), left turns (15%), and
right turns (5%).

The comparison of the control strategies, as reflected by Figure 2, explains
and supports our hypothesis, that the BC shows a purely reactive behavior,
whereas the MRC shows a qualitatively improved behavior.

4 Macro-Action Maps

As outlined in the last section, for the MRC there are four discernable robot-
environment interactions which are clearly related to the internal dynamics
of the controller. The two small hysteresis effects, corresponding to the
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Figure 3: The time development of the MRCs first return map of output
differences ∆O(t), and its projection onto the (∆O(t), t) plane (right).

Figure 4: The relative appearance of points in the MRCs first return map
of output differences ∆O, indicating three main actions represented by the
points ∆O = +2, 0, −2.

co-existence of two fixed point attractors, become active during simple left
or right turns. The third hysteresis effect with its extended input domain
is activated in typical deadlock situations, whereas simple straight forward
movements in obstacle free space indicate a unique stable fixed point. Figures
2(b), 3, and 4 illustrate that these different interaction states are easy to
distinguish if in addition to the difference of the motor outputs ∆O also its
time development is plotted. The following table shows the relations between
features of the internal dynamics, difference in controller output, and the
external situation:

4.1 Definition and Implementation

One possible way to implement a temporal segmentation of different robot-
environment interaction states and its graphical representation is based on
the following definitions.

A macro-action [{+/-} d, s], d, s > 0, describes a rotation of d time
steps to the right (+) or left(-) followed by a positive straight movement of
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internal dynamics ∆0 time steps external world

unique stable fixed point 0 any no obstacles
LHE −2 < 20 obstacle on the right
RHE +2 < 20 obstacle on the left
EHE ±2 > 20 sharp corners, impasses, etc.

Table 1: Relation between internal dynamics of the MRC and the external
world.

s time steps. We call {+/-} the sign of the macro-action. A sequence of
turns with no straight forward movement between them are summarized to
one turn. A is the set of all macro-actions. A macro-action map (MAM) is
defined as a directed graph with nodes representing macro-actions and the
directed edges indicate the temporal predecessor-successor relation between
two macro-actions.

The development of such a MAM is inspired by the work on landmark-
based navigation [12]. The robot segments its path through the environ-
ment according to landmarks. These landmarks are kept in a simple, self-
organizing chain representation. Here, instead of landmark macro-actions
are used. During interaction the emerging macro-actions are appended to
the list of macro-actions. Usually this list would be temporally ordered. But
before a new macro-action is added, it is tested if there exists a similar node
in the list. If a similar node is found, values of the already existing node in
the list will be updated with a value, which is the mean of the new and the
already existing node. If there are more than one similar nodes in the list,
only the first in the list will be changed. The predicate S : A×A → {0, 1} of
similarity between two macro-action [d1, s1] and [d2, s2] is defined as follows:

S([d1, s1], [d2, s2]) = 1 ⇐⇒ (sign(d1) · sign(d2) = 1) ∧ (|d1 − d2| ≤ 5)

∧
(

|s1 − s2| ≤ 5 ∨ |s1 − s2| ≤
1

2
(s1 + s2)

)

.

Finally a predecessor-successor relation will be established between the last
node in the list and the already existing similar node. In such a way predecessor-
successor relations between macro-actions are established. Iterating this pro-
cedure while the robot is moving in its environment, a MAM unfolds, which
represents, on the level of attractor sequences, the interaction of the robot.
This procedure is fulfilled as long the number of nodes does not increase
anymore. Then the robot is stopped and nodes and relations in MAM are
deleted if they are updated relatively seldom with respect to the total num-
ber of nodes in the MAM. Updates are counted for each node and relation.
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In the following experiments we delete nodes if their update rate was less
than 5 %, and relations if their update rate is less than 2.5 %.

4.2 Experiments on Building up MAMs

The following experiments will make clear how specific features of the robot
environment are represented by the macro-action maps. Some examples of
such MAMs and the related interactions are shown in Figure 5, 6, 7 and 9.
The nodes of the graphs in these figures are labeled by the corresponding
macro-action and a number, which is the absolute number of its occurrences
during which the MAM was developed. Correspondingly, the numbers on
the edges indicate the absolute number of occurrence of this sequence of
macro-actions.

[−17, 335]35 35

Figure 5: Right: robot path controlled by the MRC in square shaped world.
In this simple world a very simple macro-action maps consisting of only one
node and one edge is developed (left side).

For the first experiment (Figure 5) the MAM consists of only one node
and one edge. In this case the world is square shaped with no obstacles, and
it can be argued, that the constant rotation angles lead to constant driving
distances and vice versa. Therefore the interaction of this world with this
MRC is characterized by a temporal constant sequence of two interaction
states: turning and driving straight. They are characterized by the left
hysteresis effect (LHE) and the unique fixed point attractor (compare Table
1).

The same holds for the second experiment (Fig. 6) for which the world
is chosen to be rectangular. In contrast to the first experiment there are
now two different distances which the robot can move straight forward after
a simple turn. Like in the first experiment the turning angle remains con-
stant, but in this rectangular world the robot has to cover a short and a long
distance until the next obstacle. Therefore the macro-action map represent-
ing the robot interaction in this experiment consists of two nodes and edges.
This can be interpreted as the alternate appearance of the two macro-actions
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[-18, 57] and [-17, 423] during the interaction. The first indicates a turn
to the left followed by a short forward move and the second also a turn to
the left but followed by a longer forward movement.

[−18, 57] 32[−17, 423]

31

30

31

Figure 6: Robot path controlled by the MRC in rectangular world (right
side). The two different distances which can be covered by robot before an
obstacle appears are indicated by the two nodes in the corresponding macro-
action map on the left.

[47, 401]

[20, 185] [−16, 95] [18, 32] [−16, 11] [18, 4] [−18, 3]

17 17 19 15

17 34 34 34 14 14

33

18 35 35 15 15

Figure 7: Robot path controlled by the MRC in triangular world (right
side) and the corresponding macro-action map on the left side. See text for
explanations.

A more interesting experiment is shown in Figure 7. Here the robot is
confronted with two sharp corners: the bottom left corner and the upper
right corner. In the corresponding MAM these two corners are represented
by one and the same node ([47,401]). This is because in the sharp corners
only the EHE becomes active which produces the large turning angle with
the same sign. Referring only to this single node the robot therefore can not
discriminate by itself in which of these two sharp corners it is located.

But if the temporal sequence of the macro-actions is taken into account
then these two sharp corners became distinguishable. As it is pictured in Fig-
ure 8 the macro-action sequence [47, 401] [20, 185] indicates the robots
way out of the bottom left sharp corner and the sequence [47, 401][-16,

95] the way out of the upper right sharp corner. Because after the escape of
the bottom left corner the next obstacle is always avoided by a turn to the
left. Whereas after an escape of the upper right corner the next obstacle is
always avoided by a turn to the right.
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[47, 401] [−16, 95] [47, 401] [20, 185] 

Figure 8: Subpathes of the robots interaction in the triangular world an
the corresponding macro-action sequences, which are also subsequences of
the MAM in Figure 7. The first node / macro-action refers to both sharp
corners, but the successor node indicates which corner exactly the robot
comes from.

[−3, 265]

95

130

144
61 117 154

516148

69

472

336

268

164

159

72

[5, 22]

[−5, 38] [−26, 4]

[−12, 46][28, 8]

[18, 21]

136

157126

[1, 111]

Figure 9: Robot path controlled by the MRC in a small corridor (bottom) and
the corresponding macro-action map on the top. See text for explanations.

The last experiment in this section is an example for the fact that simple
worlds can nevertheless produce complex MAMs. Figure 9 shows the environ-
ment of this experiment, which is a small corridor. One might suggest that
the corresponding MAM contains only one node, as in the first experiment.
But, the robot controlled by the MRC moves hardly parallel to the walls,
and therefore it will oscillate between the two walls of the corridor. This
means many turns and therefore many macro-actions are performed during
the interaction. And finally it can be observed at the end of the corridor
that the robot usually turns back in two steps. In the corresponding MAM
this is represented by the two macro-action sequences [28,8][18,21] and
[-26,4][-12,46].

Traveling through the corridor is characterized by oscillations as it is
depicted in the macro-action map of Figure 9 by the loop between the two
macro-actions [-5,38] and [5,22]. The relation between these two nodes
and the movement through the corridor is demonstrated in Figure 10. The
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[−5, 38] [5, 22]

Figure 10: Traveling through the small corridor is characterize by a zigzag
move, because the robot moves hardly parallel to the walls. So, the robot-
environment interaction in this experiment is mainly described by small turn-
ing angles followed by short straight forward moves. This is related to the
substructure of the MAM in Figure 10 (bottom) with only two nodes and
edges, because left and right turns are alternately performed.

most frequent occurrence of this oscillation in this experiment is indicated
by the large numbers of the corresponding nodes and edges in Figure 9.

[1, 111]

[−5, 38]

[5, 22]

Figure 11: In the MAM of the experiment with the small corridor (Fig. 9)
the node [-5, 38] has the two successor nodes [5, 22] and [1, 111]. The
paths which correspond to these macro-actions are shown, line style refers to
the same node / macro-action in the subgraph at the bottom of this figure.
The two successor nodes or macro-actions are mainly distinguished by their
”turning angles” 5 and 1. It is easy to see in this figure, that a smaller
turning angle leads in a corridor to a longer straight forward movement.

Another point of the MAM in this experiment is, that the two nodes [-5,
38] and [5, 22] representing the zigzag move through the corridor are the
only nodes, which have two successor nodes. It is easy to see in Figure 11 and
12, that for each node the second successor node reflects the “experiences” of
the robot, that in narrow corridors smaller turning angles to avoid collisions
lead to longer straight forward movements.
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[−5, 38]

[−3, 265]

[5, 22]

Figure 12: Like Figure 11, but according to node [5, 22] the successor node
[-3, 265] in comparison with successor node [-5, 38] reflects the fact that
smaller ”turning angles” lead to longer straight forward movements.

4.3 Experiments on Using MAMs for Exploration, Hom-

ing and Navigation

In the previous section the reader saw how MAM can be used to characterize
the robot–environment interaction. The next three experiments demonstrate
how MAMs can be used to encode behavioral sequences, which overcome the
limited interaction of the MRC. In the following it is shown that a MAM
based categorization of environmental states can provide exploration, homing
and navigation capabilities.

(a) (b) (c)

Figure 13: Robot path controlled by the MRC, but including a random turn
if the last two (a) / four (b) / ten (c) macro-actions are similar. (100,000
time steps are plotted in Fig. (a) and (b) and 250,000 in (c).)

First of all a few definitions must be introduced in this section. As it
was pointed out earlier, a MAM is a directed graph G = (V, E), with v ∈
V representing the macro-actions and e ∈ E representing the predecessor-
successor relationships between the macro-actions. A path of length k from a
macro-action v0 to a macro-action vk in the directed graph G = (V, E) of the
MAM is a sequence 〈v0, v1, . . . , vk〉 of macro-actions such that (vi, vi+1) ∈ E

for i = 0, . . . , k − 1. The length of the path is the number of relations. We
also have to define the similarity of macro-actions and paths of macro-actions.
Two macro-actions are similar (v0 ≈ v1) if they satisfy the relation given in
equation 2. A path p of macro-actions is a subset of a MAM G = (V, E) if
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∀ vp ∈ p ∃ vi ∈ V : vp ≈ vi and for each relation between to macro-actions in
the path, there exists a corresponding relation between two similar macro-
action in the MAM. A corresponding relationship does not have to have the
same occurrence label; i.e.

p ⊂ G ⇐⇒ ∀ (vp, vp+1) ∈ p ∃ e = (vi, vi+1) ∈ E : vp ≈ vi, vp+1 ≈ vi+1, vi ∈ V.

The first experiment in this section demonstrates how the robot controlled
by the MRC can develop an exploration behavior. We assume, that a good
exploration behavior is shown, if the robot’s path through the world covers
up most of the free space. This is done using the square shaped environment
as shown in Figure 5. As it was already mentioned the robots interaction
in this world is represented by a MAM with only one node and one edge.
That means, during the interaction only one macro-action emerges. During
the interaction of the robot with the environment, a new path of macro-
actions (in this case with vp = vq, ∀vp, vq ∈ p) is generated. To equip the
robot with exploratory abilities the control of the interaction by the MRC is
interrupted, if a path p of a certain length k of newly recorded macro-actions
is a subset of the MAM. The interruption in this case means that the robot
will turn a random angle and then be controlled by the MRC again. Figure 13
reflects the results of three experiments of this kind. The difference between
these three experiments is the value, which determines how many of the last
macro-actions have to be similar before a random turn is triggered.

The results of the three experiments show that after the robot is rotated
by a random angle it does not take a long time to reach the old pathway, as
shown in Figure 5. But in contrast to this figure the paths plotted in the
Figures 13(a) – (c) indicate that there are two such stable pathways in this
square shaped world. Depending from the start position and orientation the
robot runs clockwise or counterclockwise through this world after a while.
This determines in which of this two stable pathways the robot will end. Go-
ing back to the exploration abilities, one can see that in all three experiments
the robot covers the whole area. The difference is according to the length k

of the subset of macro-actions, that have to occur, before a random turn can
be performed.

In the next experiment a homing behavior using MAM was implemented.
In a triangular world (like Figure 7) the robot has to recognize only one of the
two sharp corners as its home and wait there for a while. As it was already
argued in the corresponding experiment of the pervious section, each sharp
corner in this world is represented by the same node in the MAM. Therefore
the robot has to distinguish the two sharp corners by a precedent sequence
of macro-actions. In detail, additionally to the pure MRC control a attention
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mode is implemented, which is deactivated by default but becomes active, if a
specific sequence of two macro-actions occurs. Finally, if the attention mode
is active and a macro-action corresponding to an extended hysteresis effect
(EHE) occurs, then the robot stops for a certain time. After the waiting time
is over, the attention mode is deactivated and the robot is controlled again by
the MRC. Thus, “home” is not determined by the single node representing
both sharp corners but is distinguished by a macro-action sequence activating
the attention mode. For example, if the upper right sharp corner is defined
as “home” (compare Fig. 7), then a macro-action sequence similar to [47,

401][-16, 95] activates the attention mode. The sequence [47, 401][20,

185] defines the the bottom left corner as “home”.

Figure 14: Homing behavior experiment with the miniature robot Khepera
in a triangular world, like Fig. 7. One of the two sharp corners in this world
is defined as home. If the robot moves in this ”home corner”, it has to stay
there for a certain time.

This experiment has been done with a simulated and a real Khepera
robot testing each corner separately as home. A mpeg-video, which can be
downloaded from [10], shows two experiments with the real Khepera robot.
Figure 14 is a screen shot of the first experiment in this movie where the
”upper right” corner (according to Figure 7) is defined as home. Both exper-
iments show the following fact: the robot only stops in the correct corner,
but it also passes the correct corner. This is because, to recognize the sharp
corner, which is defined as home, a similar sequence of the corresponding
macro-action has to occur. In detail this means, that the robot can not take
a look at the currently appearing sensor values, because they are ambiguous.
In fact, a sequence or a path of macro-actions must be recorded in order to
find the correct corner. This means that a certain level of robot-environment
interaction has to be performed, as the MRC has a limited sensory system.
A robust discrimination between the two sharp corners can only be based on
the anticipated macro-action sequence, which emerge from a specific robot-
environment interaction.

In the last experiment of this section the MAM is applied to solve a
navigation problem. Figure 15(a) shows the path of a robot through a small
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corridor, which is identical to the experiment in Fig. 9. As it was already
mentioned in the pervious section, the movement through the corridor is
mainly characterized by zigzag movements. But the MAM of this experiment
reflects also ”experiences” of the robot that small turning angles lead to
longer distances before a new avoidance action has to be triggered. In this
experiment it was tried to reduce the zigzag movements and bring the robot
to straight movements through this corridor using the corresponding MAM
in the following way.

(a)

(b)

(c)

Figure 15: Three robot paths through the small corridor. Figure (a) shows
the incisive zigzag movements of the robot. The two other figures show more
straight movements through the small corridor - mainly in the middle.

Like in the two experiments before the occurring macro-actions are mon-
itored during the interaction. The control of the robot by the MRC is inter-
rupted, if a macro-action occurs, which is similar to those macro-actions rep-
resenting the oscillational behavior in the corridor (see Fig. 10). During this
interruption the robot is turned 1 step to the right, if the last macro-action is
similar to [-5, 38]. This is defined according to its second successor node
[1, 111] in the MAM (Fig. 9 and 11). Because this second successor node
refers to a longer distance before an avoidance behavior is triggered. Accord-
ingly the robot is turned 3 steps to the left, if the last macro-action is similar
to [5, 22]. Because in this case those 3 turn steps to the left refer to the
second successor node [-3, 265] of node [5, 22] (Fig. 9 and 12), which
again refers to a longer straight movement distance. After this rotation the
control is given back to the MRC.

Figure 15(b) and (c) show the results of two runs of this experiment. The
zigzag movements are still there, mainly at the ends of the corridor. This
is not surprising, because first of all the specific macro-action must occur to
”recognize” the small corridor and to trigger the smoother turns. In detail,
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the dynamics of the controller has to be in or near enough to the correspond-
ing attractor. But in the middle of the corridor straight movements are the
majority. Whereas in the experiment, where the robot is only controlled by
the MRC (Fig. 15(a)), the zigzag movements are predominant.

5 Discussion

In this article a basic robot behavior - moving in a given environment by
avoiding scattered objects - was chosen to demonstrate two methods for
representing robot-environment interactions by dynamical features of neuro-
controllers. The first method, based on first return maps of sensori-motor
data, revealed a clear difference in control techniques between a standard
feed-forward type of neuro-controller, the BC, and a more sophisticated one,
the MRC, which makes extensive use of the recurrent connectivity of its mo-
tor neurons. The resulting differences in robot behavior becomes obvious es-
pecially in deadlock situations. In particular, the first return map (M-FRM)
of the motor data and the combination (SMM) of sensor and motor data
appeared to be most instructive. They already indicate the existence of four
fundamental types of robot-environment interactions, which are constituted
by the neural structure of the MRC.

Based on Table 1 the MAMs can be seen to indicate the temporal sequence
of internal dynamical features of the MRC, which become effective during the
interaction of the robot with its environment. Basically each macro-action
for the MRC relates to a hysteresis interval of sensor inputs followed by
a dynamics determined by a global fixed point attractor. The number of
time steps of the actual rotation allows to distinguish between hysteresis
effects over small and extended input domains. Finally, the sign of a macro-
action indicates left and right turns; i.e., left and right hysteresis effects.
Therefore one can use the MAMs as a representation of the objects or specific
features of the world as they occur during the interaction of the robot with
its environment. According to the four different dynamical properties of the
MRC this representation can only refer to categories like obstacle on the left,
obstacle on the right, deadlocks, and free space. This is an essential point,
with respect to the landmark-based navigation approach. Landmark types
are defined by human designers [12] whereas the MAM approach only takes
into account the perception of the robot.

But the experiments in section 4 show that other categories of environ-
mental conditions can be built, if substructures of MAMs are taken into
account. The experiments in section 4.3 indicated that MAMs can pro-
vide homing and navigation tasks. The homing experiment demonstrated
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a method for distinguishing different objects in the environment based on
macro-action sequences of a MAM. In addition the implementation of this
experiment on a physical mobile robot shows that MAMs are able to handle
noisy and discretized environments. Furthermore the navigation experiment
introduced a MAM based classification of “small corridors”. In addition,
this classification was used to trigger specific actions in such a way that the
number of turning actions (or zigzag movements) was decreased. Although
in this case the improved action-selection process is “hard-wired”, the trigger
conditions and the triggered action were defined according to the underlying
MAM. Therefore it is argued, that MAMs can be seen as basic entities for
an anticipation process, on which planning tasks can be realized.

It was shown that the MAM approach implies the usage of regularities
arising from the sensori-motor interaction of the robot-environment system.
That is, because the basic entities of the MAMs, the macro-actions, are the
behavior relevant dynamical features of the MRC, which become active in
different environmental situation. But it was also shown that this implies,
any object categorization (like a specific sharp corner or a small corridor
in section 4.3) is a result of a performed interaction. An interaction is al-
ways specified by the environment, the robot as an embodied systems, and
a controller. Therefore, the MAM approach is conform with approaches,
which assume that perception and interaction can not be separated, and the
generated behavior influences the perception process ([3], [4], [13], [15], [19]).

As was mentioned in the introduction, this contribution is intended to be a
demonstration of method. In fact the presented MAM approach is here based
only on the MRC. This controller was evolved for obstacle avoidance only and
therefore the MAM is strongly dependent on this system and task. Especially
the definition of the mapping (Table 1) between internal dynamical properties
of the MRC and its output signals depend on this system. Using our modular
neuro-dynamics approach to behavior control of autonomous agents this work
is understood as a first step to equip autonomous agents with self-generated
internal representations of behavior relevant properties of the external world.
Other tasks and other robot platforms will in general require other controllers
with different dynamical properties. Hence these systems will need other
mappings to generalize temporal sequences of dynamical features during the
interaction with the environment.

The experiments have shown that MAMs can become very complex, when
representing the full sequences of the interactions. But the homing and the
navigation experiments suggest also that a representation of the whole in-
teraction sequence is not necessarily needed to solve a specific problem. In
fact, homing and navigation tasks use only specific substructures of the un-
derlying MAM. Therefore future work on MAMs has to include mechanisms

21



which can focus on or separate relevant substructures of the MAM.
But the question which substructures of a MAM or which internal repre-

sentation of the environment will be necessary and sufficient for the agent is
then of course task dependent. Therefore the agent must be able to evaluate
the MAM by itself with respect to a given problem or task. Following [6]
we argue, that this evaluation of the agents internal representation has to
include the agents anticipated and the actual interaction outcomes. The el-
ements of the MAM are directly related to the external world and accessible
by the agent and therefore a promising starting point to endow autonomous
agents with self-generated internal representation to improve their behavioral
repertoire.
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