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1. Introduction 
Robot intelligence is often associated with the concept of autonomous systems which have 

to decide and act without central control, external technical guidances, or human assistance. 

Especially autonomous mobile robots are nowadays conceived of as robots that can operate 

in complex, dynamically non-trivial environments. They are supposed to be equipped with 

several types of sensors and with various actuators to solve a desired task. Sometimes they 

are assumed to develop also communication skills and some kind of social behaviour which 

allows cooperative interaction – possibly with humans. 

To compare the achievements of various approaches in this highly active field the RoboCup 

competition [1] delivered an exquisite test platform for the behaviour control of autonomous 

mobile robots. It offers a well-defined environmental setup and is supported by a large and 

growing community. The global benchmark is to win the RoboCup competition, but it also 

allows the definition of subtasks on an individual as well as on cooperative level. 

A successful neural control of autonomous mobile robots, mimicking a kind of cognitive 

behaviour, would be interesting to study: Like their biological counterparts, these neural 

networks are assumed to use recurrent connectivity and dynamical features to generate a 

goal oriented behaviour. Driven by their sensor inputs, these artificial neural systems will 

allow to study the appearance and disappearance of their dynamical attractors, i.e. the 

delicate balance of stability and instability of neurodynamics, features which seem to be 

crucial for many of the adaptive and higher-information processing capabilities of biological 

systems. Eventually, this studies will lead to alternative design methods for robust neural 

controllers avoiding the standard (and often not very efficient) learning algorithms [7]. 

Being open to the question how a successful neurocontroller may look like, it seems to be 

appropriate to use an Artificial Life approach to Evolutionary Robotics [6], [8]. This approach 

was proven to derive interesting solutions to control problems, even without specifying 

beforehand the number of neurons or the connectivity of the desired networks, [10], [9]. 



In this contribution we will apply techniques of evolutionary robotics to develop the control for 

the goalkeeper of the GMD-Musashi RoboCup-team. We consider the goalkeeper as one of 

the key players in nowadays RoboCup competitions. For some reason, defending the goal 

seems to be a critical task, as there are almost no convincing goalkeepers presented yet. 

Most of them tend to defend very poorly or even leave the goal. 

Watching real RoboCup matches, one can define two primary goals for the evolution of a 

neurocontroller. First of all the goalkeeper has to defend the goal from any approaching ball. 

Defending the goal does not include the sidelines or any other area on the play field. 

Therefore the primary restriction for the goalkeeper is that the penalty area is not to be left at 

any time. This paper presents an evolved neural network for behaviour control of a 

goalkeeper robot, which is structurally minimal and optimal with respect to the described 

task. It represents an understandable goalkeeper strategy, and selects only a reduced set 

of sensor informations for its control. 

2. General Setup 
We use an algorithm, called ENS3 (“evolution of neural systems by stochastic synthesis”) in 

[9], which evolves neural networks of general recurrent type. It is used mainly for structure 

development, but it also optimises parameter values like synaptic weights at the same time. 

Only the number of input and output neurons of a controller is fixed according to a given 

sensor-motor configuration. Therefore resulting networks can have any number of internal 

neurons and any kind of connectivity structure, including feedback-loops and self-

connections. During the evolution of controllers, parameters of the evolutionary process, 

such as the probability of including, deleting or changing synapses and neurons, can be 

modified online. Other such parameters are the average size of a population, the steepness 

of a selection function, and costs of neurons and synapses, etc. 

For convenience, neurons of the controllers will be of the additive graded type with zero bias 

terms. The dynamics of the controllers is then given by 

 
The transfer function is given by the hyperbolic tangent f(x) = tanh(x).  

For simplicity, the controlled robot will be only able to move in one dimension, backwards or 

forward. Experiments with the resulting controller will then be tested on a physical robot. The 

physical robot platform we use for this approach is the GMD Musashi RoboCup goalkeeper 

[4]. This robot is a four-wheel robot, with a two wheel differential drive. It uses an omni-vision 

camera system, which is the only physical sensor that is used for our experiments. Data from 



this vision system are derived from blob detection [5] and include angle to the goal, angle to 

the ball, distance of the ball, etc.  

The used simulator, DDSim [3], provides a 2 ½ dimensional simulation of wheeled robots. 

The interface and the data delivered by the simulated robot correspond to the physical robot, 

so that the effort to adapt the controller to the physical robot is reduced to a minimum. 

The controller inputs are defined as follows; αg is the relative angle of the goalkeeper to the 

goal, mapping [-180°:180°] onto [-1:1], lg the relative width of the goal blob detected by the 

camera to the maximum possible width, mapped to [-1:1] where negative values correspond 

to a position close to the goal, αb the relative angle of the goalkeeper to the ball, mapping [-

180°:180°] onto [-1:1] , db the distance of the goalkeeper from the ball, mapping [0:700]cm 

onto [-1:1], where -1 denotes 700cm or not visible, v the velocity of the robot, mapping [-

160:160]cm/s onto [-1:1]. The controller output m is the motor command, mapping [-1:1]  

onto [-160:160]cm/s. 

3. Experimental Setup 
The overall setting for the RoboCup Mid-Size League robots is a well defined play field [1]. 

To evolve goalkeeper behaviour we have to design an appropriate fitness function. To 

achieve this, we first define three different regions for the goalkeeper on the play field: the 

food place, the habitat, and the lethal area. For an omni-directional vision system, as used in 

the GMD RoboCup robot, the centre of the goal, extended by some radius rg is the optimal 

waiting position (food place), as the maximal distance to the goal posts is minimised, and an 

approaching ball is visible from any direction and position of the robot. The goalkeeper is in 

the food place, if its coordinates (xg, yg) satisfy 

 
where (xf , yf ) is the centre of the food place, which also is the centre of the goal line. The 

habitat is the extended area, in which the robot is allowed to move. The area is chosen as an 

equivalent to the penalty area defined by the RoboCup rules [1]. Defending a ball outside of 

this area should be the task for a defender, not the goalkeeper. The functions defining this 

area are then given by 

 
where {(x0, y0), . . . , (x1, y1)} denote the four corners of the penalty area. The lethal area is 

then defined by negation of the habitat. 

The fitness is measured in terms of the energy E of the robot. Initially the robot has an 

energy depot E0 from which it can live of. With Et we will denote the energy level at the time t. 

Time is measured in discrete steps starting with 0, t = 0, 1, 2, . . . , (tmax - 1), where tmax is the 



maximal evaluation time of the robot in the environment. The energy depot is limited by a 

defined maximum of energy Emax the robot can store. With ∆e = Et+1 - Et we will denote the 

energy difference from one time step to the next. The evaluation of the robot ends, if the 

maximal lifetime is reached, or if the energy level satisfies Et = 0. If the robot moves, it 

consumes energy according to an additionally movement term em > 0, which will be 

subtracted from Et. Thus the three areas defined above are characterised by the difference 

∆e in the following way: ∆e > 0 if the robot is in the food place, ∆e < 0, if it is in the habitat, 

and ∆e = -Emax if the robot is in the lethal area. In addition, the environment is also 

determined by the behaviour of the dynamical object, the ball. If the ball passes the goal line, 

the evaluation of the robot is terminated (Et = 0). As the setup of the environment should be 

the same for every robot within one generation, a list of B = {b0, . . . , bn-1} with |B| = n 

different ball settings will be produced. A ball setting bi = {xi, yi, αi} is a defined starting point 

(xi, yi) with a starting angle αi. The ball speed is set constant, but is high with respect to the 

robot speed for all balls. As discussed later, the result shows that this does not mean any 

restriction for the behaviour control of the robot. If the ball has passed the goal, or was 

reflected by the goalkeeper (non-kill situations) a new ball must be picked from the list of 

balls. The list of balls B is implemented as ring. The agent must be able to regenerate 

energy, after reflecting a ball, therefore no ball is presented to the goalkeeper for pb cycles, 

after a ball is reflected. 

To avoid the bootstrap problem [8] we use incremental evolution in the following sense. The 

first tasks presented are chosen to be solvable without much controller structure. The 

difficulty of the tasks increases, if more than one controller has an almost optimal fitness (see 

below) over more than one generation. The first generations of controllers face a rather 

simple task. It can be described as “find the food!”. Every robot in all generations is started at 

the corners of the goal. The maximal lifetime tmax of an agent is chosen so that simply 

passing the food place, i.e. moving straight forward or backwards, can increase the fitness. 

Staying in the food place will result in a high fitness. As soon as agents are evolved which 

solve this task, balls are shot in such a way that the evaluation of those robots is terminated, 

which only oscillate over width of the goal or simply stay in the food place. After this task is 

solved sufficiently, new balls are added to the list of balls, and the maximal lifetime tmax is 

increased, such that the difficulty of the task is increased. 

A reasonable fitness function for the evaluation should be able to distinguish between 

agents, that did reach the maximal life time and agents that did not, as well as between 

robots, that were energy conserving and such that were not. Only using the number of time 

steps does not distinguish between robots, which reached the maximum evaluation time. 



Some might have learned to be very energy conserving, so they deserve a higher fitness. 

Only using the remaining energy does not distinguish between robots that were terminated 

during the evaluation process, as they all have E = 0. But some might have lived longer than 

others (reflected more balls), and therefore deserve a higher fitness. To have the desired 

properties of distinction between individuals, we use both terms, energy and life time. The 

fitness function is then given by  

 
An agent, which reached tmax will have the energy term added to its fitness, compared to an 

agent that reached tmax - 1. Consequently it will be able to produce significantly more 

offsprings. This results in a high selection pressure to reach the maximal life time. The 

controller has 5 input neurons and 1 output neuron (see sec. 2). The evolutionary process 

starts with only the input and output neurons. No connections or hidden neurons are set. The 

energy level was not chosen to be an input to the neural network, as the physical robot has 

no energy depot equivalent to the setup describes above. The inputs and outputs are chosen 

according to the input and output signals of the physical and simulated robot [3]. 

4. Results & Analysis 
Among the results of the evolutionary process was a small neuro controller that did not use 

all of the presented inputs. In fact, it only uses the relative ball angle αb and the relative goal 

angle αg (see fig 2, left) to achieve maximal fitness. The robot generated by this controller, 

shows a behaviour that is optimal concerning the setup and the goals defined before. The 

structure evolution presented a varity of different neural network tolopologies, with a higher 

number of hidden neurons and synapses. The neural network presented here outperformed 

or showed equal performance compared to the other networks, but with a minimal structure. 

Therefore this networks was choosen for presentation. The properties of this controller can 

be described as follows: Goalkeeper: The controller was able to defend all balls that headed 

towards the goal (those from the ball list, as well as those manually positioned and moved). 

Penalty Area: The controlled goalkeeper never leaves the penalty area, even if balls pass the 

goal in a large distance. Positional Play: The controlled goalkeeper did not just follow the 

ball, but showed a good positional play. The goalkeeper positions itself almost at the line, 

connecting the centre of the goal with the centre of the ball (see fig 3). In the following we will 

discuss the formal analysis of the controller, followed by experiments that represent the most 

common situations on the play field. For the formal analysis we will discuss the dynamics of 

the controller, which is given by 

             



where wb is the weight from the ball angle input neuron, wg is the weight from the goal angle 

input neuron, and ws is the self-connection of the output neuron. Having a sub-critical self-

connection (ws < 1) and the hyperbolic tangent as transfer function, the isolated output 

neuron always has the origin as a stable fix point a* = 0 [2]. This fixed point a* = 0 

corresponds to a resting goalkeeper. To derive the values of αg, αb for which the goalkeeper 

will stop, we solve the fix point equation and finally get 

                                 
The solutions of equation (6) describe configurations for which the robot stops. Figure 1, 

right, shows the relationship between the angle of the ball αb and the distance yg of the 

goalkeeper from the centre of the goal, which is given by the equation 

 
with xg = 85 [cm] denoting the fixed distance of the goalkeeper from the goal line. It is seen, 

that the goalkeeper can not leave the penalty area for any valid value of the relative ball 

angle αb. In the following we will compare this formal analysis with experiments that 

represent extreme and common situations on the play field. The plot in figure 2 shows the 

inputs and the output over 1000 time steps with five different intervals where the ball was 

placed by hand. The first section of the recorded data corresponds to the reaction of the 

goalkeeper, if the ball is placed in the upper corner of the field. The ball was first not visible 

and then suddenly appeared in the vision field of the robot. This can happen during a real 

game, as the other robots often gather around the ball, and therefore cover it completely. 

The strong deflection is the result of the recurrent connection. The following oscillations 

result from oscillations of the input data, in this case the goal angle αg. This oscillation was 

identified as an artefact of an older version of the simulator, which was used here. One can 

see, that the goalkeeper will not leave the goal after reaching some maximum goal angle αg. 

The same holds for the other side (ball position 2), where the goalkeeper will also not leave 

the penalty area. The larger amplitude of the oscillations are due to the larger amplitude of 

the oscillating input values delivered by the simulator. In section 3 there are no oscillations in 

the input data, and it can be seen, that the robot then takes and holds it’s optimal position. 

The high peek of the controller output is again the result of a non visible ball, that suddenly 

appears in the vision field of the robot. The same situation, but mirrored can be observed in 

section 4. In the last section the ball is placed in front of the goalkeeper, and causes almost 

no reaction of the robot. 



5. Discussion 
An evolutionary robotics approach was used to develop a neural control for an effective 

behaviour of a RoboCup goalkeeper. Motivated by Artificial Life arguments, the reference to 

an energy reservoir of the agent led to the separation of the environment into nutritious and 

hostile areas. This allowed the definition of a simple fitness function, which nonetheless 

coded the desired behaviour in a very effective way. Although the problem was reduced to 

that of driving a goalkeeper with only one degree of freedom, the result of the applied 

evolutionary techniques is remarkable in two ways. First, the evolved neurocontroller is 

structurally of astonishing simplicity: it uses no internal neurons and only a self-connection of 

the output neuron. This made an analysis of the underlying functionality very simple. It turned 

out, that the controller implements the strategy, that the goalkeeper roughly has to stay on 

the line from the ball to the centre of the goal. Second, evolution showed that for an effective 

goalkeeper behaviour not all of the available sensor information was necessary: Only two of 

the supplied five inputs where used, namely the relative angles to the ball and to the goal. 

Nonetheless, the controller is able to handle balls with different speeds starting at all allowed 

field positions. Especially, for this control no prediction of the ball position or speed is 

needed. 

Experiments with the physical robot of the GMD-Musashi RoboCup-team showed similarities 

as well as differences to the simulations. As expected, the robot did not hold its 1-

dimensional orientation; because of the slip of the wheels it turned towards or away from the 

goal. Despite this fact, the physical robot showed a behaviour comparable to that observed in 

simulations. But the physical robot also showed oscillations, which turned out to be the result 

of data bufferring and delays resulting from the robot’s inertia. 

In forthcoming experiments the simulation will include also the physical properties of the 

robot. Furthermore, the new goalkeeper is assumed to move in two dimensions, realising an 

optimal positional play.  

 

Figure 1: Left: The controller has 5 inputs, and 1 output (see sec. 2).  Centre: The two inputs 

used by the controller. Right: The relationship between the angle of ball αb the distance yg. The 



angle αb is given in rad, the distance yg in cm. The goal is 200cm wide, the penalty area is 

300cm wide. 

 

Figure 2 The left plot shows the inputs αg, αb and the output m for different situations over 1000 

time steps. The numbers correspond to the positions on the field on the upper right figure. 
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